Возведение числа в отрицательную степень. Число в минусовой дробной степени


Как число возвести в степень?

Одно из самых основных арифметических действий - возведение числа в степень. Поэтому так важно досконально знать, что такое степень, какие у неё особенности. Существуют строгие правила, по которым нужно возводить число в дробную, десятичную и отрицательную степень.

Как возвести число в степень: правила

Возвести число  в степень n (показатель степени) означает умножить число (основание степени) само на себя n раз:

  • а ⁿ = а*а*а*….*а, где а - основание степени, n - показатель.

Это легко сосчитать, если n – натуральное целое положительное число.

Если показатель степени n = 0, результат будет равен 1:

Ноль в любой степени – 0, поскольку умножение любого числа на 0 даёт 0:

Любое число в первой степени равно само себе:

В свою очередь, единица в любой степени – всегда единица, потому что сколько ни умножай единицу саму на себя, всё равно будет 1:

Возведение отрицательного числа в степень

Особый случай, когда основание степени отрицательное. Тогда результат будет тоже отрицательным, только если показатель степени нечётный. Любое число в чётной степени всегда даёт положительный результат:

  • (-2)² = (-2)*(-2) = 4;
  • (-2)³ = (-2)*(-2)*(-2) = -8.

Почему так получается, понятно: перемножение двух минусов в результате даёт плюс. При следующем умножении на минус получится минус.

Как возвести число в отрицательную степень

Отрицательными могут быть не только основания степени, но и её показатели. Отрицательный показатель означает, что данная степень находится в знаменателе, а в числителе – 1:

Пример:

  • 5^(-2) = 1/5² = 1/25 = 0,04.

Если основание степени отрицательное, все правила сохраняются: при чётном показателе результат положительный, при нечётном – отрицательный:

(-5)^(-3) = 1/(-5)^3 = 1/(-125) = -1/125 = -0,008.

Как возвести в дробную степень

Подробнее об этом написано в статье Как возводить в дробную степень, здесь расскажем вкратце.

Если показатель степени представляет собой дробь вида 1/n, это означает действие, обратное возведению в степень, т.е. из основания степени нужно извлечь корень n-ной степени:

а^(1/n) = ⁿ√а.

Например,

27^(1/3) = ³√27 = 3.

Если числитель в показателе степени отличен от 1, значит, результат нужно будет возвести в степень, равную числителю, и извлечь корень степени знаменателя:

а^(n/h) = (ʰ√a)ⁿ.

Пример:

36^(3/2) = (√36)³ = 6³ = 216.

Показатель степени в виде десятичной дроби лучше преобразовать в простую дроб

elhow.ru

правила возведения числа и наглядные примеры

В одной из предыдущих статей мы уже упоминали о степени числа. Сегодня мы постараемся сориентироваться в процессе нахождения ее значения. Научно говоря, мы будем выяснять, как правильно возводить в степень. Мы разберемся, как производится этот процесс, одновременно затронем все вероятные показатели степени: натуральный, иррациональный, рациональный, целый.

Итак, давайте подробно рассмотрим решения примеров и выясним, что значит:

  1. Определение понятия.
  2. Возведение в отрицательную ст.
  3. Целый показатель.
  4. Возведение числа в иррациональную степень.

Определение понятия

Вот точно отражающее смысл определение: «Возведением в степень называют определение значения степени числа».

Соответственно, возведение числа a в ст. r и процесс нахождения значения степени a с показателем r — это идентичные понятия. К примеру, если стоит задача вычислить значение степени (0,6)6″, то ее можно упростить до выражения «Возвести число 0,6 в степень 6».

После этого можно приступать напрямую к правилам возведения.

Возведение в отрицательную степень

Минусовая степень обозначает, что число множат на него самого такое количество раз, какое значится в ст., а после этого единицу делят на вычисленный результат.

Для наглядности следует обратить внимание на такую цепочку выражений:

1\10=0,1=1* 10 в минус 1 ст.,

1\100=0,01=1*10 в минус 2 степ.,

1\1000=0,0001=1*10 в минус 3 ст.,

1\10000=0,00001=1*10 в минус 4 степeни.

Благодаря данным примерам можно четко просмотреть возможность моментально вычислить 10 в любой минусовой степени. Для этой цели достаточно банально сдвигать десятичную составляющую:

  • 10 в -1 степeни — перед единицей 1 ноль;
  • в -3 — три нуля перед единицей;
  • в -9 — это 9 нулей и проч.

Так же легко понять по данной схеме, сколько будет составлять 10 в минус 5 ст. —

1\100000=0,000001=(1*10)-5.

Как возвести число в натуральную степeнь

Вспоминая определение, учитываем, что натуральное число a в ст. n равняется произведению из n множителей, при этом каждый из них равняется a. Проиллюстрируем: (а*а*…а)n, где n — это количество чисел, которые умножаются. Соответственно, чтобы a возвести в n, необходимо рассчитать произведение следующего вида: а*а*…а разделить на n раз.

Отсюда становится очевидно, что возведение в натуральную ст. опирается на умение осуществлять умножение (этот материал освещен в разделе про умножение действительных чисел). Давайте рассмотрим задачу:

Возведите -2 в 4-ю ст.

Решение:

Мы имеем дело с натуральным показателем. Соответственно, ход решения будет следующим: (-2) в cт. 4 = (-2)*(-2)*(-2)*(-2). Теперь осталось только осуществить умножение целых численностей:(-2)*(-2)*(-2)*(-2). Получаем 16.

Ответ на задачу:

(-2) в ст. 4=16.

Пример:

Вычислите значение: три целых две седьмых в квадрате.

Решение:

Данный пример равняется следующему произведению: три целых две седьмых умножить на три целых две седьмых. Припомнив, как осуществляется умножение смешанных чисел, завершаем возведение:

  • 3 целых 2 седьмых умножить на самих себя;
  • равно 23 седьмых умножить на 23 седьмых;
  • равно 529 сорок девятых;
  • сокращаем и получаем 10 тридцать девять сорок девятых.

Ответ: 10 39/49

Возведение в иррациональную стeпeнь

Касаемо вопроса возведения в иррациональный показатель, следует отметить что расчеты начинают проводить после завершения предварительного округления основы степени до какого-либо разряда, который позволил бы получить величину с заданной точностью. К примеру, нам необходимо возвести число П (пи) в квадрат.

Начинаем с того, что округляем П до сотых и получаем:

П в квадрате = (3,14)2=9,8596. Однако если сократить П до десятитысячных, получим П=3,14159. Тогда возведение в квадрат получает совсем другое чиcло: 9,8695877281.

Здесь следует отметить, что во многих задачах нет надобности возводить иррациональные числа в cтeпeнь. Как правило, ответ вписывается или в виде, собственно, степени, к примеру, корень из 6 в степени 3, либо, если позволит выражение, проводится его преобразование: корень из 5 в 7 cтепeни = 125 корень из 5.

Как возвести чиcло в целую степень

Эту алгебраическую манипуляцию уместно принимать во внимание для следующих случаев:

  • для целых чисел;
  • для нулевого показателя;
  • для целого положительного показателя.

Поскольку практически все целые положительные числа совпадают с массой чисел натуральных, то постановка в положительную целую степень — это тот же процесс, что и постановка в ст. натуральную. Данный процесс мы описали в предшествующем пункте.

Теперь поговорим о вычислении ст. нулевой. Мы уже выяснили выше, что нулевую степень числа a можно определить для любого отличного от нуля a (действительного), при этом a в ст. 0 будет равно 1.

Соответственно, возведение какого угодно действительного числа в нулевую ст. будет давать единицу.

К примеру, 10 в ст.0=1, (-3,65)0=1, а 0 в ст. 0 нельзя определить.

Для того чтобы завершить возведение в целую степень, остается определиться с вариантами целых отрицательных значений. Мы помним, что ст. от a с целым показателем -z будет определяться как дробь. В знаменателе дроби располагается ст. с целым положительным значением, значение которой мы уже научились находить. Теперь остается лишь рассмотреть пример возведения.

Пример:

Вычислить значение числа 2 в кубе с целым отрицательным показателем.

Процесс решения:

Согласно определению стeпeни с отрицательным показателем обозначаем: два в минус 3 ст. равняется один к двум в третьей cтепeни.

Знаменатель рассчитывается просто: два в кубе;

3 = 2*2*2=8.

Ответ: два в минус 3-й ст. = одна восьмая.

Видео

Из этого видео вы узнаете, что делать, если степень с отрицательным показателем.

liveposts.ru

Как посчитать отрицательную степень

Показатель у степенного выражения указывает, сколько раз число будет умножаться само на себя при возведении в данную степень. А как возвести число в отрицательную степень? Ведь "количество раз" не бывает отрицательным. Чтобы решить эту проблему, следует привести данное выражение в нормальный вид: придать степени положительное значение.

Спонсор размещения P&G Статьи по теме "Как посчитать отрицательную степень" Как вычислить дробную степень Как посчитать дробную степень Как возвести число в степень

Инструкция

1

Для того чтобы вычислить значения числа, имеющего отрицательный показатель степени, приведите данное число в вид, в котором показатель степени приобретет положительное значение. Все числа с отрицательной степенью можно представить в виде обыкновенной дроби, в числителе которой стоит единица, а в знаменателе – первоначальное числовое выражение с той же степенью, только уже имеющей знак "плюс". (см рисунок).

Если принять необходимые для примеров обозначения: 3^-5 – три в минус пятой степени, 3^5 – три в пятой степени, то решения подобных задач будут иметь вид, показанный в примерах.

Пример: 3^-5 = 1 /3^5. Три в минус пятой степени равно дроби: единица, деленная на три в пятой степени.

2

Приведенное в дробный вид степенное выражение не усложняется, а просто преобразуется. Решить его далее несложно. Возведите в степень число, стоящее в знаменателе. Получится дробь, где в числителе, по-прежнему, стоит единица, а в знаменателе - уже возведенное в степень число.

Пример: 3^-5 = 1 /3^5 = 1 / 3 * 3 * 3 * 3 * 3 = 1 / 243. Единица, деленная на три в пятой степени, равна единице, деленной на двести сорок три. В знаменателе число три возведено в пятую степень, то есть умножено на себя пять раз. Получилась обыкновенная правильная дробь.

3

Далее, если вас устраивает данная дробь, примите ее за ответ, ежели нет, вычисляйте дальше. Для этого разделите числитель на знаменатель, то есть единицу на возведенное в степень число.

Пример: 3^-5 = 1 /3^5 = 1 / 3 * 3 * 3 * 3 * 3 = 1 / 243 = 0,0041. Обыкновенная дробь стала равна десятичной, округленной до десятитысячных долей.

При делении числителя на знаменатель (для перевода обыкновенной дроби в десятичную) зачастую ответ получается с большим остатком (длинным значением дробной части у ответа). В таких случаях принято просто округлять десятичную дробь до удобных долей.

Как просто

masterotvetov.com

Ответы@Mail.Ru: Что означает минусовая степень?

минусовая степень значит в знаменателе например 2 -2 это 1/4 короче говоря минус в степени означает что это x -y =1/x y отрицательная степень, это единица деленная на число в положительной степени

будет 1/2 в степени 2 =1/4 то есть минус у степени уходит, а двойка уходит в знаменатель....

Это, по-моему, дробь 1/4

Когда степень отрицательна, число превращается в дробь, которую нужно возвести в эту степень, но уже без минуса.

touch.otvet.mail.ru

Возведение числа в отрицательную степень

Как известно, в математике существуют не только положительные числа, но и отрицательные. Если знакомство с положительными степенями начинается с определения площади квадрата, то с отрицательными всё несколько сложнее.

Основные понятия и положения

Это следует знать:

  1. Возведением числа в натуральную степень называется умножение числа (понятие число и цифра в статье будем считать эквивалентными) само на себя в таком количестве, каков показатель степени (в дальнейшем будем использовать параллельно и просто слово показатель). 6^3 = 6*6*6 = 36*6 =216. В общем виде это выглядит так: m^n = m*m*m*…*m (n раз).
  2. Нужно учитывать, что при возведении отрицательного числа в натуральную степень, оно станет положительным, если показатель чётный.
  3. Возведение числа в показатель 0 даёт единицу, при условии, что оно не равно нулю. Ноль в нулевой степени считается неопределённым. 17^0 = 1.
  4. Извлечением корня некой степени из числа называется нахождение такого числа, которое при возведении в соответствующий показатель даст искомое. Так, корень кубический из 125 равен 5, поскольку 5^3 = 125.
  5. Если требуется возвести число в дробную положительную степень, то необходимо возвести число в показатель знаменателя и извлечь из него корень показателя числителя. 6^5/7 = корень седьмой степени из произведения 6*6*6*6*6.
  6. Если требуется возвести число в отрицательный показатель, то необходимо найти цифру обратную данной. x^-3 = 1/x^3. 8^-4 = 1/8^4 = 1/8*8*8*8 = 1/4096.

Возведение в отрицательную степень числа по модулю от нуля до единицы

Сначала нам следует вспомнить, что такое модуль. Это расстояние на координатной прямой от выбранного нами значения до начала отсчёта (нуля координатной прямой). По определению он никогда не может быть отрицательным.

Значение больше нуля

При значении цифры в промежутке от нуля до единицы отрицательный показатель даёт увеличение самой цифры. Происходит это из-за уменьшения знаменателя, остающегося при этом положительным.

Рассмотрим на примерах:

  • 1/7^-3 = 1/(1/7^3) = 1/(1/343) = 343;
  • 0,2^-5 = 1/0,2^5 = 1/0,2*0,2*0,2*0,2*0,2 = 1/0,00032 = 3125.

Причём, чем больше модуль показателя, тем активнее растёт цифра. При стремлении знаменателя к нулю — сама дробь стремится к плюс бесконечности.

Значение меньше нуля

Сейчас рассмотрим как возводить в отрицательную степень, если цифра меньше нуля. Принцип тот же, что и в предыдущей части, но здесь имеет значение знак показателя.

Опять-таки обратимся к примерам:

  • -19 / 21^-4 = 1/(-19/21)^4 = 1/(-19)^4/21^4 = 21^4/(-19)^4 = 21*21*21*21/(-19)*(-19)*(-19)*(-19) = 194481/130321 = 1,4923228;
  • -29/40^-5 = 1/(-29/40)^5 = 1/(-29)^5/40^5 = 40^5/(-29)^5 = 40*40*40*40*40/(-29)*(-29)*(-29)*(-29)*(-29) = 102400000/(-20511149) = -4,9924.

В данном случае, мы видим, что модуль продолжает расти, а вот знак зависит от чётности или нечётности показателя.

Следует заметить, если мы возводим единицу, то она всегда останется сама собой. В случае, если нужно возвести число минус один, то при чётном показателе степени она превратится в единицу, при нечётном останется минус единицей.

Возведение в целую отрицательную степень если модуль больше единицы

Для цифр, чей модуль больше единицы, есть свои особенности действий. Прежде всего, нужно целую часть дроби перевести в числитель, то есть перевести в неправильную дробь. Если у нас имеется десятичная дробь, то её необходимо перевести в обычную. Делается это следующим образом:

  • 6 целых 7/17 = 109/17;
  • 2,54 = 254/100.

Теперь рассмотрим, как возвести число в отрицательную степень в данных условиях. Уже из вышеизложенного, мы можем предположить, чего нам ждать от результата вычислений. Так как двойная дробь при упрощениях переворачивается, то модуль цифры будет уменьшаться тем быстрее, чем больше модуль показателя.

Для начала рассмотрим ситуацию, когда данная в задании цифра положительная.

Прежде всего, становится понятно, что конечный результат будет больше нуля, ибо деление двух положительных всегда дает положительное. Снова рассмотрим на примерах как это делается:

  • 6 целых 1/20 в минус пятой степени = 121/20^-5 = 1/(121/20)^5 = 1/121^5/20^5 = 20^5/121^5 = 3200000/25937424601 = 0,0001234;
  • 2,25^-6 = (225/100)^-6 = 1/(225/100)^6 = 1/225^6/100^6 = 100^6/225^6 = 100*100*100*100*100*100/225*225*225*225*225*225 = 0,007413.

Как видим, особых сложностей действия не вызывают, и все наши первоначальные предположения оказались истинными.

Теперь обратимся к случаю отрицательной цифры.

Для начала можно предположить, что если показатель чётный, то итог будет положительным, если показатель нечётный, то и результат окажется отрицательным. Все предыдущие наши выкладки в данной части, будем считать действительными и сейчас. И снова разберём на примерах:

  • -3 целых 1/2 в минус шестой степени = (-7/2)^-6 = 1/(-7/2)^6 = 1/(-7)^6/2^6 = 2*2*2*2*2*2/(-7)*(-7)*(-7)*(-7)*(-7)*(-7) = 64/117649 = 0,000544;
  • -1,25^-5 = (-125/100)^-5 = 1/(-125/100)^5 = 1/(-125)^5/100^5 = 100^5/(-125)^5 = 100*100*100*100*100/(-125)*(-125)*(-125)*(-125)*(-125) = 10000000000/(-30517578125) = -0.32768.

Таким образом, все наши рассуждения оказались верными.

Возведение в случае отрицательного дробного показателя

Здесь нужно запомнить что подобное возведение есть извлечение корня степени знаменателя из числа в степени числителя. Все предыдущие наши рассуждения остаются верными и на сей раз. Поясним наши действия на примере:

  • 4^-3/2 = 1/4^3/2 = 1/rad(4^3) = 1/rad64 = 1/8.

В этом случае, нужно иметь в виду, что извлечение корней высокого уровня возможно только в специально подобранном виде и, скорее всего, избавиться от знака радикала (корня квадратного, кубического и так далее) при точных вычислениях вам не удастся.

Все же, подробно изучив предыдущие главы, сложностей в школьных вычислениях ожидать не стоит.

Следует заметить, что под описание данной главы подходит и возведение с заведомо иррациональным показателем, например, если показатель равен минус ПИ. Действовать нужно по вышеописанным принципам. Однако, вычисления в подобных случаях становятся настолько сложными, что под силу только мощным электронно-вычислительным машинам.

Заключение

Действие, которое мы изучали, является одной из самых сложнейших задач в математике (особенно в случае дробно-рационального или иррационального его значения). Однако, подробно и пошагово изучив данную инструкцию, можно научиться без особых проблем проделывать это на полном автомате.

Видео

В видео подробно рассказывается о том, как производить вычисления, если степень с отрицательным показателем.

liveposts.ru

Дробная степень числа

Дробный показатель

Число с дробным показателем степени равно корню, с показателем равным знаменателю и подкоренным числом в степени равной числителю.

Чтобы разобраться, почему число в дробной степени равно корню, надо вспомнить правило извлечения корня из степени:

Чтобы извлечь корень из степени, надо показатель степени разделить на показатель корня:

Следовательно, если показатель степени не делится на показатель корня, то получается дробная степень:

Поэтому извлечение корня всегда может быть заменено возведением в степень.

Действия над степенями с дробными показателями

Действия над степенями с дробными показателями совершаются по тем же правилам, которые установлены для степеней с целым показателем.

При доказательстве этого положения, будем сначала предполагать, что члены дробей: и , служащих показателями степеней, положительны.

В частном случае n или q могут равняться единице.

При умножении дробный степеней с одинаковыми основаниями их показатели складываются:

При делении дробных степеней с одинаковыми основаниями из показателя делимого вычитается показатель делителя:

Чтобы возвести степень в другую степень в случае дробных показателей, достаточно перемножить показатели степеней:

Чтобы извлечь корень из дробной степени, достаточно показатель степени разделить на показатель корня:

Правила действий применимы не только к положительным дробным показателям, но и к отрицательным.

naobumium.info

Как возводить в минусовую степень

Возведением числа в степень называется математическая операция последовательного умножения этого числа на само себя столько раз, сколько это указывает его степень. Само число принято называть «основанием», а степень - «показателем». Как основание, так и показатель могут быть и положительными и отрицательными числами. Если с положительным показателем все достаточно понятно, то возведение числа в отрицательную степень немного сложнее при вычислении.

Инструкция

  • Преобразуйте исходную запись математического действия (возведение числа в отрицательную степень) к форме обыкновенной дроби. Если обозначить основание степени как X, а модуль показателя как a, то запись Xˉª можно представить в виде обыкновенной дроби Xˉª/1.
  • Избавьтесь от минуса в показателе степени. Для этого надо поменять местами числитель и знаменатель в полученной на первом шаге обыкновенной дроби, оставив в показателе дроби (-a) модуль показателя (a): Xˉª = Xˉª/1 = 1/Xª.
  • Найдите численное значение выражения, стоящего в знаменателе дроби (Xª). Например, если основанием дроби является число 12 (X=12), а модулем показателя - число 3 (a=3), то знаменателем дроби должно быть число 1728 (12³=1728). То есть обыкновенная дробь должна принять вид 1/1728.
  • Переведите дробь, полученную на предыдущем шаге, из обыкновенной формы записи в десятичную. Чаще всего в результате такого преобразования получается число с бесконечным количеством знаков после десятичной запятой (иррациональное число), поэтому десятичную дробь следует округлить до нужной вам степени точности. Например, при переводе обыкновенной дроби 1/1728 в десятичную с точностью до семи знаков после запятой получится число 0,0005787 (1/1728≈0,0005787).
  • Используйте, например, вычислительные возможности поисковых систем, если объяснять ход преобразований от вас никто не требует. Например, если нужно получить только численное значение использованного в предыдущих шагах примера, то нет необходимости последовательно производить все преобразования и промежуточные вычисления 12ˉ³ = 12ˉ³/1 = 1/12³ = 1/1728 ≈ 0,0005787. Достаточно перейти на главную страницу Google и ввести в поле поискового запроса 12^(-3). Встроенный в поисковик калькулятор произведет все необходимые преобразования и вычисления и покажет результат с точностью до 12 знаков после запятой: 12^(-3) ≈ 0.000578703704.

completerepair.ru