Аллотропия простых веществ и химия аллотропных модификаций. Что такое аллотропные видоизменения


Аллотропное видоизменение - Большая Энциклопедия Нефти и Газа, статья, страница 1

Аллотропное видоизменение

Cтраница 1

Аллотропные видоизменения элементарного вещества - это вещества, молекулы которых различны, хотя и образованы атомами одного и того же химического элемента. Свойства аллотропных видоизменений одного и того же элемента, проявляемые в различных агрегатных состояниях, различны. Способность одного и того же вещества существовать в различных кристаллических формах называют полиморфизмом. Он может быть двух видов: энантиотропный, когда относительная устойчивость полиморфных видоизменений зависит от температуры и существует температура обратимого превращения, и монотропный, когда одно видоизменение устойчивее другого независимо от температуры. Энантиотропные полиморфные видоизменения, таким образом, подобны агрегатным состояниям одного и того же вещества. Монотропные полиморфные видоизменения являются, по существу, аллотропными видоизменениями в кристаллическом состоянии. Таким образом, границы понятий аллотропии и полиморфизма не вполне совпадают. Следует отметить, что во многих случаях элементарные вещества в жидком и газообразном состояниях содержат молекулы, различные как по числу атомов, так и по структуре. Относительное содержание этих различных молекул в массе элементарного вещества зависит от температуры и других условий, причем изменение этих условий обычно приводит к возврату соответствующих равновесий. В связи с этим, а также с трудностью изоляции отдельных форм молекул последние не принято считать самостоятельными аллотропными видоизменениями.  [1]

Аллотропные видоизменения элементарных веществ представляют собой вещества, построенные из различных молекул ( или кристаллов), образованных атомами одного и того же химического элемента. Аллотропные видоизменения одного элемента имеют различные свойства, проявляемые в различных агрегатных состояниях. Наряду с аллотропией известно также явление полиморфизма - способности одного и того же вещества существовать в различных кристаллических формах. Полиформизм может быть двух видов: э н а н т и отр о п н ы и, когда относительная устойчивость полиморфных видоизменений зависит от температуры и существует температура обратимого превращения, и монотроп-н ы и, когда одно видоизменение устойчивее другого независимо от температуры.  [2]

Аллотропные видоизменения элементарного вещества - это вещества, молекулы которых различны, хотя и образованы атомами одного и того же химического элемента. Свойства аллотропных видоизменений одного и того же элемента, проявляемые в различных агрегатных состояниях, различны. Способность одного и того же вещества существовать в различных кристаллических формах называют полиморфизмом. Он может быть двух видов: энантиотропный, когда относительная устойчивость полиморфных видоизменений зависит от температуры и существует температура обратимого превращения, и монотропный, когда одно видоизменение устойчивее другого независимо от температуры. Энантиотропные полиморфные видоизменения, таким образом, подобны агрегатным состояниям одного и того же вещества. Монотропные полиморфные видоизменения являются, по существу, аллотропными видоизменениями в кристаллическом состоянии. Таким образом, границы понятий аллотропии и полиморфизма не вполне совпадают. Следует отметить, что во многих случаях элементарные вещества в жидком и газообразном состояниях содержат молекулы, различные как по числу атомов, так и по структуре. Относительное содержание этих различных молекул в массе элементарного вещества зависит от температуры и других условий, причем изменение этих условий обычно приводит к возврату соответствующих равновесий. В связи с этим, а также с трудностью изоляции отдельных форм молекул последние не принято считать самостоятельными аллотропными видоизменениями.  [3]

Какие аллотропные видоизменения образует кремний.  [4]

Какие аллотропные видоизменения образует бор.  [5]

Какие аллотропные видоизменения фосфора вам известны. Какими свойствами они обладают и в чем различие этих свойств.  [6]

Углерод образует аллотропные видоизменения. Одной из разновидностей углерода является древесный уголь, который получают при сухой перегонке древесины при относительно низкой температуре без доступа воздуха.  [7]

Чем отличаются аллотропные видоизменения серы.  [8]

Образует несколько аллотропных видоизменений.  [9]

Из двух аллотропных видоизменений одного элемента наименее устойчивое обычно более реакционноспособно, более растворимо и имеет большее давление пара. Например, белый фосфор в противоположность красному имеет запах, несколько растворим в воде и значительно более реакционноспособен.  [10]

Сколько бы аллотропных видоизменений ни образовывал химический элемент при каких-либо определенных, заданных условиях, абсолютно устойчивым из них оказывается, как правило, лишь какое-то одно.  [11]

Сколько бы аллотропных видоизменений ни образовывал химический элемент при каких-либо определенных заданных условиях, абсолютно устойчивым из них оказывается, как правило, лишь какое-то одно.  [12]

Существует ряд аллотропных видоизменений S; наиболее важны: ромбическая сера - желтые кристаллы, плотн. Кроме этих кристаллических видоизменений серы, существуют еще аморфные модификации. Сера не растворяется в воде, хорошо растворяется в С8г ( одна из аморфных разновидностей не растворяется в нем), в толуоле. В продаже встречаются две технические разновидности серы: комовая ( газовая и природная) сера и серный цвет. Первая представляет собой главным образом ромбическую серу, содержит иногда примесь As и Se. Серный цвет ( мелкокристаллический порошок) - смесь серы, растворимой и не растворимой в С8г; менее чист, чем комовая сера.  [13]

Известно несколько аллотропных видоизменений фосфора: белый, красный, черный и др. Образование их объясняется различным расположением атомов относительно друг друга в кристаллических решетках.  [14]

Известно несколько аллотропных видоизменений фосфора.  [15]

Страницы:      1    2    3    4

www.ngpedia.ru

Аллотропные видоизменения - Справочник химика 21

    Белый фосфор — одно из аллотропных видоизменений элемента фосфора. Плотность по водороду пароп белого фосфора равна 62. Найдите формулу белого фосфора. [c.31]

    От чего зависят физические свойства простых веществ, если элемент образует несколько аллотропных видоизменений  [c.41]

    Внутри подгруппы от азота к висмуту убывают неметаллические свойства и возрастают металлические. У сурьмы эти свойства выражены одинаково, а у висмута металлические свойства преобладают. Фосфор, мышьяк и сурьма образуют несколько аллотропных видоизменений. [c.195]

    Аллотропные видоизменения элементарного вещества — это вещества, молекулы которых различны, хотя и образованы атомами одного и того же химического элемента. Свойства аллотропных видоизменений одного и того же элемента, проявляемые в различных агрегатных состояниях, различны. Способность одного и того же вещества существовать в различных кристаллических формах называют полиморфизмом. Он может быть двух видов энантиотропный, когда относительная устойчивость полиморфных видоизменений зависит от температуры и существует температура обратимого превращения, и монотропный, когда одно видоизменение устойчивее другого независимо от температуры. Энантиотропные полиморфные видоизменения, таким образом, подобны агрегатным состояниям одного и того же вещества. Монотропные полиморфные видоизменения являются, по существу, аллотропными видоизменениями в кристаллическом состоянии. Таким образом, границы понятий аллотропии и полиморфизма не вполне совпадают. Следует отметить, что во многих случаях элементарные вещества в жидком и газообразном состояниях содержат молекулы, различные как по числу атомов, так и по структуре. Относительное содержание этих различных молекул в массе элементарного вещества зависит от температуры и других условий, причем изменение этих условий обычно приводит к возврату соответствующих равновесий. В связи с этим, а также с трудностью изоляции отдельных форм молекул последние не принято считать самостоятельными аллотропными видоизменениями. Известным примером таких элементарных веществ является сера, которая в газовом состоянии содержит молекулы четырех видов — За, 5 , (цепе-) и 5 (цикло-). [c.37]

    Мышьяк образует несколько аллотропных видоизменений, так называемые альфа-, бета- и гамма-мышьяки (а, (3- и 7-мышьяки). Самой устойчивой формой при обычных условиях является 7-мышьяк. [c.483]

    Многие химические элементы периодической системы образуют не одно, а несколько простых веществ. Такое явление называют аллотропией, а каждое из этих простых веществ — аллотропным видоизменением или модификацией данного элемента. В настоящее время известно более 400 разновидностей простых веществ. Аллотропия может быть обусловлена либо числом атомов в молекуле — аллотропия состава (например, Оа и Оз), либо способом размещения молекул или атомов в кристаллах — аллотропия формы. [c.4]

    Карбин — высокомолекулярное соединение, обладающее исключительной термостойкостью (выдерживает нагревание до 2300°С). Карбин можно отнести третьему аллотропному видоизменению углерода. В этом соединении углерод находится в х -гибридизации (в алмазе — в графите — хр ). [c.89]

    Как вы докажете, что красный и белый фосфор действительно представляют собой два аллотропных видоизменения одного и того же элемента Приведите два способа доказательства. [c.95]

    Из скольких атомов состоит молекула аллотропного видоизменения серы, молекулярная масса которого около 260  [c.65]

    Сплавы на основе олова. Одним из недостатков покрытий чистым оловом является быстрая потеря способности к пайке (после 1—2 недель), а также образование самопроизвольно растущих нитевидных кристаллов ( вискеров или усов ), что недопустимо при изготовлении радиоэлектронных приборов, особенно печатных плат. Легирование олова висмутом, никелем, свинцом, кобальтом предотвращают как возникновение усов , так и аллотропные видоизменения олова при низких температурах, сопровождающиеся превращением его в порошкообразное состояние ( оловянная чума ). Кроме того, сплавы 5п— до I % В1, 8п —до 1% Со, 5п — 10—60 % РЬ (матовые после оплавления или блестящие) значительно дольше, чем олово (до года), сохраняют способность к пайке. [c.52]

    Для всех р-элементов VIA группы (халькогенов) характерны аллотропные видоизменения химическая активность халькогенов уступает галогенам. Об этом свидетельствует, например, тот факт, что кислород и сера существуют не только в связанном, но и свободном состоянии. Меньшая активность халькогенов по сравнению с галогенами обусловлена главным образом большей прочностью их молекул, имеющих двойную связь. У халькогенов (особенно у серы) ярко проявляется способность к образованию соединений с цепочечным строением (Н—О—О—Н, Н—S—S—S—Н, —Se—Se— [c.424]

    Чем объяснить существование большого числа аллотропных видоизменений углерода  [c.136]

    Элементарными, или простыми, веществами называются вещества, построенные из атомов одного химического элемента. Их иногда называют также гомоядерными соединениями. Они являются формой существования химических элементов в свободном виде и свойства элементарных веществ соответствуют химической природе элементов. Очевидно, что и классификация элементарных веществ должна соответствовать классификации химических элементов. Однако некоторые химические элементы образуют по нескольку элементарных веществ — так называемые аллотропные видоизменения (см. 1.2). В этих случаях наибольшее соответствие природе элемента наблюдается у видоизменений, термодинамически наиболее устойчивых в данных условиях. [c.36]

    Карбин — третье аллотропное видоизменение углерода представляет собой линейный полимер. Атомы углерода в кар- [c.215]

    Образует несколько аллотропных видоизменений. [c.181]

    Простые вещества образованы атомами одного элемента. Многие элементы образуют по нескольку простых веществ. Они отличаются составом, строением и носят название аллотропных видоизменений. Таковы газообразные О2 и Оз, твердые алмаз, графит и карбин. Такие элементы, как Не, Ые, Кг, Хе, Кп, в виде простых ве- [c.10]

    Физические свойства. Углерод образует три аллотропных видоизменения - алмаз, графит и карбин. [c.215]

    Существует явление аллотропии. Почему оно возможно Какие примеры аллотропных видоизменений вы знаете  [c.11]

    Экспериментальное определение молекулярной массы ромбической и моноклинной серы показывает, что молекулы серы состоят из восьми атомов, несмотря на различие модификаций. Следовательно, различие в свойствах этих аллотропных видоизменений обусловлено не различным числом атомов в молекуле (как это имело место в О2 и О3), а неодинаковой структурой формой кристаллов. Такое явление называется полиморфизмом. [c.181]

    Назовите известные вам аллотропные видоизменения неметаллов. Почему они отличаются между собой своими физическими свойствами Ответ подтвердите соответствующими примерами. [c.231]

    Перечислите изЕзестпые вам аллотропные видоизменения элементов V и VI групп периодической системы, молекулы которых образованы более чём двумя атомами. [c.41]

    Свойства кремния и его соединений. Кремний образует два аллотропных видоизменения. В соответствии с 5р -гибридиза-цией у кремния наиболее устойчива алмазоподобная (кубическая) модификация. Кристаллы этой модификации имеют темно-серый металлический блеск, проводят электрический ток. Аморфный кремний — бурый порошок. [c.223]

    Внутри подгруппы от азота тс висмуту убывают неметаллические свойства и возрастают металлические. У сурьмы эти свойства преобладают. Фосфор, мышьяк и сурьма образуют несколько аллотропных видоизменений. [c.216]

    Для элементов подгруппы кислорода характерны аллотропные. видоизменения, для серы —большое разнообразие кислородных производных. У тяжелых аналогов серы отрицательные степени окисления не характерны их соединения в. высших степенях окис- [c.434]

    Аллотропные видоизменения элементарных веществ представляют собой вещества, построенные из различных молекул (или кристаллов), образованных атомами одного и того же химического элемента. Аллотропные видоизменения одного элемента имеют различные свойства, проявляемые в различ.чых агрегатных состояниях. Наряду с аллотропией известно также явление полиморфизма— способности одного и того же вещества существовать в различных кристаллических формах. Полиформизм может быть двух видов э н а и т и о т р о п и ы й, когда относительная устойчивость полиморфных видоизменений зависит от температуры и существует температура обратимого превращения, и монотроп-н ы й, когда одно видоизменение устойчивее другого независимо от температуры. Энантиотропные полиморфные видоизменения, таким образом, подобны агрегатным состояниям одного и того же [c.111]

    При сгорании 10 г графита выделилось 330,4 кДж теплоты, 1 г алмаза —32,94 кДж, а 1,5 г карбина — 45 кДж. Рассчитайте теплоты сгорания алмаза, графита и карбина. Какое из аллотропных видоизменений углерода наиболее стабильно в обычных условиях  [c.139]

    В природе углерод встречается и в свободном состоянии, и в виде соединений, главным образом солей угольной кислоты (мел, известняк, мрамор). Много углерода содержат каменный (99%) и бурый угли, торф (57%). Углерод входит в состав нефти природного газа, воздуха, растений, организмов человека и животных. В отличие от кислорода и азота углерод при обычных условия не образует молекул, для него характерна атомная кристаллическая решетка. Это связано с четырехвалентностью углерода. Различные способы образования атомами углерода четырех связей друг с другом обусловливают существование для него трех аллотропных видоизменений алмаза, графита и карбина. Порядок взаимного расположения атомов углерода в этих веществах существенно различается. [c.240]

    Несмотря на то что в настоящее время известно 104 химических элемента, простых веществ известно более 400. Объясняется это тем, что атомы одного и того лхимического элемента, соединяясь, могут образовывать разные простые вещества. Такое свойство атомов химического элемента называется ал.готропией, а каждое нз образуемых простых веществ называется аллотропным видоизменением, или аллотропной модификацией данного элемента. [c.119]

    По химическому составу полупроводники весьма разнообразны. К ним относятся элементарные вещества, как, например, бор, графит, кремний, германий, мышьяк, сурьма, селен, а также многие оксиды ( uaO, ZnO), сульфиды (PbS), соединения с индием (InSb) и т. д. и многие соединения, состоящие более чем из двух элементов. Известны и некоторые органические соединения обладающие полупроводниковыми свойствами. Таким образом, к полупроводникам относится очень большое число веществ. Обусловлены полупроводниковые свойства характером химической связи (ковалентным, или ковалентным с некоторой долей ионности), типом кристаллической решетки, размерами атомов, расстоянием между ними, их взаиморасположением. Если химические связи вещества носят преимущественно металлический характер, то его полупроводниковые свойства исключаются. Зависимость полупроводниковых свойств от типа решетки и от характера связи ясно видна на примере аллотропных модификаций углерода. Так, алмаз — типичный диэлектрик, а графит — полупроводник с положительным температурным коэффициентом электропроводности. То же у олова белое олово — металл, а его аллотропное видоизменение серое олово — полупроводник. Известны примеры с модификациями фосфора и серы. [c.298]

    П юстые вещества образованы атомами одного элемента. Многие элементы образуют по нескольку простых веществ. Они отличаются составом, строением и носят название аллотропных видоизменений. Таковы газообразные Oj и Оа, твердые алмаз, графит и карбин. Такие элементы, как Не, Ne, Кг, Хе, Rn, в виде простых веществ одноатомны при обычных условиях. Для многих других веществ переход в одноатомное состояние возможен только при соответст-вуюшем энергетическом воздействии. [c.10]

    Физические свойства. Железо — металл серебристого цвета, довольно мягкий и пластичный. Температура плавления выше 1500" С. Железо притягивается магнитом и намагничивается под действием электрического тока. Известно несколько аллотропных видоизменений (модификаций) железа. До 898°С его кристаллы имеют кубическую объемно-центрированную решетку (а-железо), а в интервале 898—140ГС — гранецентрированную (7-железо). Выше 1401 и до 1528°С (температура плавления) вновь образуется объемно-цептрярованная кубическая решетка. В отличие от а-железа у-железо немагнитно. После резкого охлаждения (закалка железа) у закаленного образца сохраняется структура -железа и при комнатной температуре. [c.112]

    Например, между простыми веществами О (дикислород) и Оз (трикислород) различие заключается в количественном соотношении атомов в молекуле. Озон О3 в обычных условиях разлагается на О 2 и О. Итак, элемент кислород в свободном состоянии может существовать в виде двух простых веществ -аллотропных видоизменениях. [c.10]

    Например, между простыми веществами О2 (дикислород) и 63 (трикислород) различие заключается в количественном соотиощении атомов в молекуле. Озон О3 в обычных условиях разлагается на О2 и О. Итак, элемент кислород может образовать два простых вещества, представляющих собой аллотропные видоизменения. [c.12]

    Физические свойства. Сера представляет собой твердое вещество лимонно-же.птого цвета. Не растворяется в воде, легко растворяется в сероуглероде. Образует несколько аллотропных видоизменений. [c.201]

    Ка рбин — третье аллотропное видоизменение углерода представляет собой линейный полимер. Атомы углерода в карбине связаны чередующимися тройными и одинарными связями  [c.238]

    N Р N2 — бесцветный газ, малорастворим в воде. Температура кипения -196 С Существует в виде нескольких аллотропных видоизменений. Важнейшие из них N205 НЫОз Р2О5 (Р4О10) НРОз Бесцветное кристаллическое вещество. При взаимодействии с водой образуется азотная кислота Белое порошкообразное гигроскопическое вещество. При взаимодействии с водой при обычной температуре образуется метафосфорная кислота, а прн нагрева- [c.133]

chem21.info

Аллотропные модификации

Аллотропией называют способность атомов одного элемента формировать разные типы простых веществ. Так образуются соединения, отличные друг от друга.

Аллотропные модификации являются стабильными. В условиях постоянного давления при определенной температуре эти вещества могут переходить одни в другие.

Аллотропные модификации могут образовываться из молекул, имеющих разное количество атомов. Например, элемент Кислород образует озон (О3) и собственно вещество кислород (О2).

Аллотропные модификации могут быть твердыми веществами, имеющими разное строение кристаллов. К таким соединениям можно отнести, например, алмаз и графит. Указанные вещества - аллотропные модификации углерода. Этот химический элемент может образовывать пять простых веществ: гексагональный и кубический алмаз, графит, карбин (в двух формах).

Гексагональный алмаз обнаружен в метеоритах и получен в лабораторных условиях при продолжительном нагревании под воздействием очень высокого давления.

Алмаз, как известно, является самым твердым из всех веществ, существующих в природе. Применяется он при бурении горных пород и резке стекла. Алмаз представляет собой бесцветное прозрачное кристаллическое вещество, которое обладает высокой светопреломляемостью. Кристаллы алмазов имеют кубическую гранецентрированную решетку. Половина атомов кристалла располагается в центрах граней и вершинах одного куба, а остальная половина атомов – в центрах граней и вершинах другого куба, который смещен относительно первого по направлению пространственной диагонали. Атомы формируют тетраэдрическую трехмерную сетку, в которой они имеют ковалентные связи.

Из всех простых веществ только в алмазе присутствует максимальное количество атомов, которые располагаются очень плотно. Поэтому соединение является очень прочным и твердым. Прочные связи в углеродных тетраэдрах обеспечивают высокую химическую стойкость. На алмаз может воздействовать только фтор или кислород при температуре восемьсот градусов.

Без доступа воздуха при сильном нагреве алмаз превращается в графит. Это вещество представлено кристаллами темно-серого цвета. Графит имеет слабый металлический блеск. На ощупь вещество маслянистое. Графит устойчив к нагреванию, обладает сравнительно высокой тепло- и электропроводностью. Вещество применяют при изготовлении карандашей.

Карбин получают синтетическим путем. Это твердое вещество черного цвета со стеклянным блеском. Без доступа воздуха при нагревании карбин превращается в графит.

Существует еще одна форма углерода – аморфный углерод. Эту неупорядоченную структуру получают при нагревании углеродосодержащих соединений. Большие залежи угля обнаруживаются в природных условиях. При этом вещество имеет несколько сортов. Уголь может быть представлен в виде сажи, костяного угля или кокса.

Как уже было указано, аллотропные модификации одного элемента характеризуются разной межатомной структурой. Кроме того, они наделены различными химическими и физическими свойствами.

Сера является еще одним элементом, способным к аллотропии. Это вещество применяется человеком с давних времен. Существуют разные аллотропные модификации серы. Наиболее популярной является ромбическая. Она представлена твердым веществом желтого цвета. Ромбическая сера не смачивается водой (плавает на поверхности). Это свойство применяется при добыче вещества. Ромбическая сера растворима в органических растворителях. Вещество обладает плохой электро- и теплопроводностью.

Кроме этого, существует пластическая и моноклинная сера. Первая представляет собой коричневую аморфную (похожую на резину) массу. Она образуется, если в холодную воду вылить расплавленную серу. Моноклинная представлена в виде темно-желтых игл. Под влиянием комнатной (или приближенной к ней) температуре обе эти модификации переходят в ромбическую серу.

fb.ru

Аллотропия простых веществ и химия аллотропных модификаций

В природе встречаются такие химические элементы, которые могут существовать в форме различных простых веществ, свойства которых, как химические, так и физические различны, а также кардинально различны строения их кристаллических решеток. В химии это называется «Аллотропия».

Аллотропия, это

Понятия «Аллотропия» имеет древнегреческие корни: αλλος — другой, τροπος — свойство.

Термин вошел в обиход с 1841 благодаря шведскому ученому, И. Я. Берцелиусу, в целях обозначения различных форм проявления одного и того же химического элемента.

Аллотропия химических элементов может проявляться в виде:

  • аллотропии состава, когда различно число атомов в молекуле,
  • аллотропии формы, когда различны строения кристаллических решеток.

В современной химии термин «Аллотропия» используется для простых веществ, вне зависимости от их агрегатного состояния.

Для веществ с твёрдым агрегатным состоянием, независимо от того, это вещество простое или сложное, используется термин «Полиморфизм» (от греческого слова Διαφοροποιημένο — многообразный).

Аллотропные преобразования

Химические элементы, образующие различные простые вещества и встречающиеся в природе, называются аллотропными формами химического элемента.

Химические элементы, образующие различные простые вещества под воздействием изменения окружающих условий, например, температура и давление, называются аллотропными модификациями химического элемента.

Не все химические элементы обладают свойством аллотропии.

Установлено, что аллотропией обладают химические элементы с высокой степенью окисления и способностью атомов к образованию гомоцепных структур.

Поэтому аллотропные преобразования в основном наблюдаются у неметаллов (за исключением галогенов и инертных газов), а также у полуметаллов.

Аллотропные преобразования металлов в природе встречаются намного реже. Только 28 металлов при атмосферном давлении имеют аллотропные формы и 6 образуют аллотропные модификации при их технологической обработке.

Химия аллотропных переходов

Преобразования химического элемента происходят при химическом переходе его атомного или молекулярного состояния из одной формы в другую. Эти переходы могут происходить при изменении окружающих условий, например:

  • при нормальном давлении и изменении температуры;
  • при изменении давления при неизменной температуре;
  • при одновременном изменении давления и температуры.

Эти преобразования могут носить обратимый (энантиотропный) характер или необратимый (монотропный).

Примеры преобразований:

  • энантиотропный переход — превращение ромбической серы (α-S) в моноклинную (β-S) при нормальном давлении и температуре 95,6 °C. При снижении температуры ниже 95,6 °С происходит обратный переход моноклинной формы в ромбическую.
  • монотропный переход — модификация белого фосфора P4 в чёрный фосфор при температуре 200 °C и давлении 1,25 ГПа. Возвращение температуры и давления к исходным условиям не приводит к обратному переходу.

У некоторых химических элементов аллотропные переходы могут чередоваться.

Примером является олово.

Белое олово (β-Sn) в обычных условиях пластичное, имеет тетрагональную кристаллическую решетку и устойчиво.

Белое олово при повышении температуры выше 173 °C, превращается в хрупкую форму (γ-Sn). Превращение происходит энантиотропно.

Белое олово при понижении температуры ниже 13.2 °C, превращается в серое олово (α-Sn) порошкообразное с кубической алмазоподобной решёткой. Превращение происходит монотропно.

Некоторые химические элементы и их модификации

Неметаллы

  • Углерод — является лидером по количеству аллотропных форм и модификаций с абсолютно различными свойствами, а также строению кристаллических решеток. Самые распространенные из алмаз и графит. Есть также углеродные нанотрубки, лонсдейлит, фуллерен, карбин и многие другие.
  • Сера — вторая по подверженности аллотропии среди неметаллов. Основные ее виды: ромбическая, моноклинная и пластическая. При нормальных условиях окружающей среды моноклинная и пластическая модификации серы переходят в ромбическую.
  • Фосфор — имеет 11 аллотропных форм, различающихся числом атомов в молекуле, химическими связями и свойствами, из которых белый фосфор, красный фосфор и черный фосфор имеют устойчивые формы и встречаются в природе, остальные формы распадающиеся и в природе не встречаются.
  • Селен — в свободном состоянии бывает в трех видах: красный цикло-Se8, гексагональный или серый селен Se и чёрный селен.
  • Водород — бывает в виде o-h3 (орто-водород) и p-h3 (пара-водорода). Молекулы o-h3 и p-h3 отличаются построением ядерных спинов. У o-h3 они параллельные, у p-h3 антипараллельные.
  • Кислород — модифицируется в два вещества: Кислород (O2) и Озон (O3).

Полуметаллы

  • Бор — встречается в более, чем в 10 состояниях в аморфной и кристаллической формах. Физические свойства этих форм различны.
  • Кремний — бывает в аморфной и кристаллической формах. У кристаллической модификации решётка атомная, алмазоподобная.
  • Сурьма — имеет четыре металлические и три аморфные аллотропные модификации. Металлические формы существуют при разном давлении. Аморфные формы сурьмы: взрывчатая, чёрная и жёлтая.
  • Мышьяк — встречается в трех аллотропных состояниях: в виде неметалла или жёлтый мышьяк, в виде полуметаллического полимера или серый мышьяк, в виде неметаллической молекулярной структуры или чёрный мышьяк.

Металлы

  • Железо — бывает в виде четырех кристаллических модификаций:
    • α-Fe или феррит. Имеет решётку объемноцентрированную кубическую. Существует до температуры 769 °C. Обладает свойствами ферромагнентики;
    • β-Fe. Имеет решётку объемноцентрированную кубическую. Существует при температурах от 769 °C до 917 °C. Обладает магнитными свойствами парамагнетики;
    • γ-Fe или аустенит. Имеет решётку гранецентрированную кубическую. Существует при температурах от 917 °C до 1394 °C;
    • δ-Fe. Имеет решётку объемноцентрированную кубическую. Имеет устойчивость при температуре выше 1394 °C.
  • Олово — имеет две аллотропные формы: серое олово (α-Sn) с алмазоподобной кристаллической решёткой в виде мелкокристаллического порошка и белое олово (β-Sn) в виде пластичного серебристого металла, а также одну аллотропическую модификацию гамма-олово (γ-Sn) с ромбической структурой. Оно высокотемпературное.

Видео

liveposts.ru

Аллотропия - это... Что такое Аллотропия?

Алмаз и графит — аллотропические формы углерода, отличающиеся строением кристаллической решётки

Аллотро́пия (от др.-греч. αλλος — «другой», τροπος — «поворот, свойство») — существование одного и того же химического элемента в виде двух и более простых веществ, различных по строению и свойствам — так называемых аллотропических (аллотропных) модификаций или форм.

Явление аллотропии обусловлено либо различным составом молекул простого вещества (аллотропия состава), либо способом размещения атомов или молекул в кристаллической решётке (аллотропия формы).

История

Понятие аллотропии введено в науку Й. Берцелиусом в 1841 году для обозначения разных форм существования элементов; одновременно он предполагал, по-видимому, применить его и к изомерии соединений. После принятия гипотезы А. Авогадро в 1860 году стало понятно, что элементы могут существовать в виде многоатомных молекул, например, О2 — кислород и О3 — озон.

В начале XX века было признано, что различия в кристаллической структуре простых веществ (например, углерода или фосфора) также являются причиной аллотропии. В 1912 году В. Оствальд отметил, что аллотропия элементов является просто частным случаем полиморфизма кристаллов, и предложил от него отказаться. Однако, по настоящее время они используются параллельно. Аллотропия относится только к простым веществам, независимо от их агрегатного состояния; полиморфизм — только к твёрдому состоянию независимо от того, простое это вещество или сложное. Таким образом, эти термины совпадают для простых твёрдых веществ (кристаллическая сера, фосфор, железо и др.)[1].

Примеры аллотропии

Аллотропные модификации фосфора (белый, красный, жёлтый, черный фосфор)

В настоящее время известно более 400 разновидностей простых веществ. Способность элемента к образованию аллотропных форм обусловлена строением атома, которое определяет тип химической связи, строение молекул и кристаллов.

Как правило, большее число аллотропных форм образуют элементы, имеющие переменные значения координационного числа или степени окисления (олово, фосфор). Другим важным фактором является катенация — способность атомов элемента образовывать гомоцепные структуры (например, сера). Склонность к аллотропии более выражена у неметаллов, за исключением галогенов и благородных газов, и полуметаллов.

Принято обозначать различные аллотропические формы одного и того же элемента строчными буквами греческого алфавита; причём форму, существующую при самых низких температурах, обозначают буквой α, следующую — β и т. д.

Неметаллы

Элемент Аллотропные модификации
Водород:

Водород может существовать в виде орто- и пара-водорода. В молекуле орто-водорода o-h3 (т. пл. −259,10 °C, т. кип. −252,56 °C) ядерные спины параллельны, а у пара-водорода p-h3 (т. пл. −259,32 °C, т. кип. −252,89 °C) — антипараллельны.

Углерод:

Множество модификаций: алмаз, графит, фуллерен, карбин, графен, углеродные нанотрубки, лонсдейлит и др. Точное число модификаций указать затруднительно вследствие разнообразия форм связывания атомов углерода между собой. Наиболее многочисленны молекулярные структуры фуллеренов и нанотрубок.

Фосфор:

Известно 11 аллотропных модификаций фосфора. Основные модификации: белый, красный и чёрный фосфор. Белый фосфор ядовит, светится в темноте, способен самовоспламеняться, красный фосфор не ядовит, не светится в темноте, сам по себе не воспламеняется.

Кислород:

Две аллотропные модификации: О2 — кислород и О3 — озон. Кислород бесцветен, не имеет запаха; озон имеет выраженный запах, имеет бледно-фиолетовый цвет, он более бактерициден.

Сера:

Большое число аллотропных модификаций, второе место после углерода. Основные модификации: ромбическая, моноклинная и пластическая сера.

Селен:

Красный цикло-Se8, серый полимер Se и чёрный селен.

Полуметаллы

Элемент Аллотропные модификации
Бор:

Бор существует в аморфном и кристаллическом видах. Аморфный бор – порошок бурого цвета. Обладает большей реакционной способностью, чем кристаллический бор. Кристаллический бор – вещество черного цвета. Известно более 10 аллотропных модификаций бора, которые кристаллизуются в ромбической и тетрагональной сингониях. Наиболее устойчивая модификация – β-ромбический бор – состоит из икосаэдров B12, которые образуют слои, объединенные в бесконечную структуру.

Кремний:

Различают две основные аллотропные модификации кремния - аморфную и кристаллическую. Решётка кристаллической модификации кремния - атомная, алмазоподобная. Также выделяют поликристаллический и монокристаллический кремний.

Мышьяк:

Три основные аллотропные модификации: жёлтый мышьяк (неметалл, состоящий из молекул As4 - структура, аналогичная белому фосфору), серый мышьяк (полуметаллический полимер), чёрный мышьяк (неметаллическая молекулярная структура, аналогичная красному фосфору).

Германий:

Две аллотропные модификации: α-Ge - полуметалл с алмазоподобной кристаллической решёткой и β-Ge - с металлической структурой, аналогичной β-Sn.

Сурьма:

Известны четыре металлических аллотропных модификаций сурьмы, существующих при различных давлениях, и три аморфные модификации (взрывчатая, чёрная и жёлтая сурьма), из которых наиболее устойчива металлическая форма серебристо-белого цвета с синеватым оттенком

Полоний:

Полоний существует в двух аллотропных металлических модификациях. Кристаллы одной из них – низкотемпературной – имеют кубическую решетку (α-Po), а другой – высокотемпературной – ромбическую (β-Po). Фазовый переход из одной формы в другую происходит при 36 °C, однако при обычных условиях полоний находится в высокотемпературной форме вследствие разогрева собственным радиоактивным излучением.

Металлы

Среди металлов, которые встречаются в природе в больших количествах (до U, без Tc и Pm), 28 имеют аллотропные формы при атмосферном давлении: Li, Be, Na, Ca, Sc, Ti, Mn, Fe, Co, Sr, Y, Zr, Sn, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Yb, Hf, Tl, Th, Pa, U. Также важны аллотропные формы ряда металлов, образующиеся при их технологической обработке: Ti при 882˚C, Fe при 912˚C и 1394˚C, Co при 422˚C, Zr при 863˚C, Sn при 13˚C и U при 668˚C и 776˚C.

Элемент Аллотропные модификации
Олово:

Олово существует в трех аллотропных модификациях. Серое олово (α-Sn) мелкокристаллический порошок, полупроводник, имеющий алмазоподобную кристаллическую решётку, существует при температуре ниже 13,2 °С. Белое олово (β-Sn) - пластичный серебристый металл, устойчивый в интервале температур 13,2—161 °С. Высокотемпературное гамма-олово (γ-Sn), имеющее ромбическую структуру, отличается высокой плотностью и хрупкостью, устойчиво между 161 и 232 °С (температура плавления чистого олова).

Железо:

Энантиотропные и монотропные переходы

Серое и белое олово

Переход одной аллотропной модификации в другую происходит при изменении температуры или давления (или одновременном воздействии обоих факторов) и связан со скачкообразным изменением свойств вещества. Этот процесс бывает обратимым (энантиотропным) и необратимым (монотропным).

Примером энантиотропного перехода может служить превращение ромбической серы в моноклинную α-S (ромб.) ↔ β-S (монокл.) при 95,6 °C. При обычной температуре стабильной является ромбическая модификация серы, которая при нагревании до 95,6 °С при нормальной давлении переходит в моноклинную форму. Последняя при охлаждении ниже 95,6 °С вновь переходит в ромбическую форму.

К монотропному переходу относится превращение белого фосфора P4 под давление 1,25 ГПа и температуре 200 °C в более стабильную модификацию — чёрный фосфор. При возвращении к обычным условиям обратный переход не происходит. Переход из нестабильной формы в стабильную в принципе возможен при любой температуре, а обратный — нет, то есть определенная точка перехода отсутствует. Еще один пример — превращение графита в алмаз при давлении 6 ГПа и температуре 1500 °C в присутствии катализатора (никель, хром, железо и другие металлы). В обоих случаях давление способствует превращению, поскольку образуется вещества с более высокой плотностью, чем исходные.

Три известные модификации олова переходят друг в друга различным образом. При обычных условиях устойчиво β-Sn (плаcтичное белое олово) с тетрагональной кристаллической решеткой[2]. Выше 173 °С β-Sn энантиотропно превращается в хрупкую модификацию γ-Sn, а ниже 13,2 °C β-Sn переходит монотропно в порошкообразное α-Sn (серое олово) с кубической решёткой типа алмаза. Этот полиморфный переход происходит с малой скоростью, но резко ускоряется в контакте с серым оловом — плотные куски белого олова рассыпаются в пыль («оловянная чума»). Обратный процесс возможен только путем переплавки.

Примечания

  1. ↑ Угай Я. А. Общая и неорганическая химия: Учеб. для студентов вузов, обучающихся по направлению и спец. «Химия». — М.: Высш. шк., 1997. — 524 с.: ил.
  2. ↑ Химическая энциклопедия: в 5 т. / Редкол.:Кнунянц И. Л. (гл. ред.). — Москва: Советская энциклопедия, 1992. — Т. 3. — С. 382. — 639 с. — 50 000 экз. — ISBN 5-85270-039-8

См. также

Литература

  • Эддисон У. Аллотропия химических элементов. – М.: Мир, 1966. – 207 с.

Ссылки

dic.academic.ru

Видоизменения аллотропические - Справочник химика 21

    Озон. Озон — аллотропическое видоизменение кислорода молекула его состоит из трех атомов. Образование озона сопровождается поглощением тепла ЗО2 20з — 288 кДж. [c.136]

    Сера образует несколько аллотропических видоизменений. Форма, наиболее устойчивая при обычных условиях,— ромбическая. Именно в таком виде самородная сера встречается в природе. Кристаллы ромбической серы представлены на рисунке ХХП-З. [c.501]

    Фосфор образует несколько аллотропических видоизменений. [c.418]

    Существование простых веществ в нескольких формах называется аллотропией, а отдельные формы — аллотропическими видоизменениями (аллотропическими модификациями). Они различаются или числом атомов в молекуле (например, кислород О2 и озон Оз), или особенностями размещения атомов относительно друг друга. На рис. 1 показано взаимное расположение атомов в кристаллических решетках алмаза и графита. [c.12]

    Явление, состоящее в том, что один и тот же элемент образует несколько различных простых веществ, называется аллотропией (по-гречески значит другой вид ), а видоизменения одного и того же элемента называются аллотропическими видоизменениями. Аллотропические видоизменения может образовать не только кислород, но и другие элементы (например, фосфор, сера). Явление аллотропии может зависеть не только от различного числа атомов, входящих в состав молекул аллотропических видоизменений, но и от других причин. [c.78]

    Озон — один из наиболее сильных окислителей. Он является аллотропическим видоизменением кислорода. Молекула его содержит три атома кислорода. Жидкий озон имеет темно-синий цвет, кипит при температуре —112 и замерзает при температуре —251° С, плотность его равна 1,46. [c.125]

    Для углерода известны два природных аллотропических видоизменения алмаз и графит. [c.83]

    Как получается свободный фосфор Какие вы знаете его аллотропические видоизменения Какими свойствами они обладают  [c.152]

    Что такое аллотропические видоизменения элемента  [c.152]

    Докажите, что алмаз, графит и уголь являются аллотропическими видоизменениями углерода. [c.152]

    Озон представляет собой аллотропическое видоизменение кислорода, при обычных условиях газообразное вещество голубоватого цвета, в жидком состоянии — темно-синее, в твердом — почти черное т. пл. озона —250° С, т. кии.—11 Г С. Во всех агрегатных состояниях озон способен взрываться от удара. Растворимость его в воде выше, чем растворимость кислорода. [c.157]

    В свободном состоянии сурьма образует серебристо-белые кристаллы, обладающие металлическим блеском и имеющие плотность 6,68 г/см . Напоминая по внешнему виду металл, кристаллическая сурьма отличается хрупкостью и значительно хуже проводит теплоту и электрический ток, чем обычные металлы. Кроме кристаллической сурьмы, известны и другие ее аллотропические видоизменения. [c.449]

    Озон. При пропускании кислорода или воздуха через электрический разряд появляется характерный запах, причиной которого является образование нового вещества — озона. Озон можно получить из совершенно чистого сухого кислорода отсюда следует, что он состоит только из кислорода и представляет собой его аллотропическое видоизменение. [c.455]

    В свободном состоянии селен, подобно сере, образует несколько аллотропических видоизменений, из которых наиболее известны аморфный селен, представляющий собой красно-бурый порошок, и серый селен, образующий хрупкие кристаллы с металлическим блеском. [c.468]

    Озон. Это аллотропическое видоизменение кислорода. Молекула озона состоит из трех атомов (Оз). [c.165]

    Выделяющийся в парообразном состоянии фосфор собирают под водой. Фосфор существует в нескольких аллотропических видоизменениях белый (или желтый), красный и черный. [c.134]

    Первая попытка сопоставления атомных размеров была сделана на основе атомных объемов. Для этого послужила кривая-атомных объемов Лотара Мейера, изображенная на рис. 3-2. принесшая ему больше славы, чем его периодическая система основанная на физических свойствах элементов. Как было сказано, атомный объем получается путем деления атомного веса элемента на плотность элемента в свободном виде, и, следовательно, он верен только в том случае, если достоверна плотность. Но плотность элемента в свободном виде зависит в большей степени от его физического состояния, кристаллической структуры, аллотропического видоизменения и температуры, при которой определена плотность. Например, плотность белого олова 7,31, а серого — 5,75. Однако, несмотря на все возможные факторы, которые могут влиять на атомный объем, удивительно, что кривая атомных объемов вполне правильно показывает периодичность свойств. [c.108]

    С. Как уже указывалось выше, сильнейшим окислителем является аллотропическое видоизменение кислорода — озон. [c.131]

    Теплота образования зависит также от аллотропического видоизменения вещества  [c.203]

    Как указывалось ранее, сильнейшим окислителем является аллотропическое видоизменение кислорода — озон. Структурные исследования молекулы озона показали, что в ней атомы кислорода расположены в вершинах равнобедренного треугольника с углом 116,5° и сторонами 0,128 нм. Молекула О3 диамагнитна и обладает некоторой полярностью (ц, = 0,17Х X Кл-м). Ее можно рассматривать как результат присоединения атома кислорода к молекуле О2. [c.162]

    Известны два аллотропических видоизменения кремния аморфный (бурый порошок) и кристаллический (чешуйчатые кристаллы серовато-черного цвета). Кремний в чистом виде имеет исключительно важное значение в полупроводниковой технике. Кремний — металлоид. В соединениях проявляет валентность —4, +2 и - Л (как углерод). [c.443]

    Физические свойства. Марганец известен в четырех аллотропических видоизменениях а-марганец, устойчивый при температурах до 727° С Р марганец устойчив при температурах до 1101° С (обе эти модификации получаются совместно алюминотермическим способом и отличаются высокой твердостью и хрупкостью) у-марганец существует в интервале температур 1101—1137° С, а выше 1137° образуется а-модификация. [c.337]

    Фосфор известен в виде нескольких аллотропических видоизменений, называемых по характерному для каждого из них цвету. [c.478]

    Установлено, что красный фосфор состоит из двух аллотропических видоизменений пурпурового и рубинового, которые можно получить отдельно. Они отличаются друг от друга некоторыми физическими свойствами. В частности, температура воспламенения рубинового фосфора 346°, а пурпурового — около 240°. [c.479]

    Известно аллотропическое видоизменение кислорода — озон. Формула его О3. Образуется во время грозовых разрядов, а также при окислении древесной смолы. В очень небольшом количестве находится в воздухе. В лаборатории озон получают при действии тихого электрического разряда (без искр) на кислород. Уравнение реакции  [c.496]

    Имеются следующие термохимические данные по теплотам сгорания различных аллотропических видоизменений углерода  [c.26]

    Физические свойства. Платиновые металлы имеют ряд аллотропических видоизменений. Чистые металлы обладают значительной прочностью и пластичностью. На механические свойства их очень сильно влияют примеси (табл. 34). [c.142]

    Углерод в свободном состоянии встречается в виде двух аллотропических видоизменений — алмаза и графита. К этим кристаллическим видоизменениям причисляют еще так называемый аморфный углерод, известный в виде угля или сажи. Однако исследования последнего времени показали, что он не представляет собой самостоятельного видоизменения, а совпадает по тонкой структуре с графитом. [c.190]

    Аллотропические видоизменения Отсутствуют  [c.304]

    Аллотропические видоизменения найдены только у марганца. [c.336]

    В виде простого вещества селен — неметалл его молекулы полиатомны. По аналогии с серой и другими неметаллами вероятно существование аллотропических видоизменений. Действительность это вполне подтверждает. Температура плавления должна быть близкой к 280°, среднему арифметическому между 112,8° (температура плавления серы) и 450,0° (температура плавления теллура). Действительная т. пл. 220,9° (для серой модификации). Восстановительные свойства слабы при накаливании, однако, должно происходить окисление в форме горения. Окислительная способность селена выражена слабее, чем у серы. При нагревании металлов с селеном должны получаться сел яиды, например СаЗе. Действительно, это наблюдается. [c.103]

    Железо имеет четыре аллотропических видоизменения а-, -, у- и 0-модификации а-модификация переходит в при нагревании до 769° С, -модификация — в -у при 910° С и -модификация в O при 1400° С. Температурные точки превращений одних аллотропических видоизменений в другие называются критическими температурами. Присутствие примесей С, Si и Мп смещает их.,  [c.348]

    Аллотропические видоизменения имеются только у бора. [c.434]

    Фосфор образует несколько аллотропических видоизменений. Белый фосфор получается в твердом состоянии при быстром охлаждении паров фосфора его плотность 1,83 г/см . В чистом виде белый фосфор совершенно бесцветен и прозрачен продажный продукт обычно окрашен в Ж йлтоватый цвет и по внешнему виду похож на воск. На холоде белый фосфор хрупок, но при температуре выше 15 С становится мягким и легко режется ножом. На воздухе белый фосфор очень быстро окисляется и при этом светится в темноте. Отсюда произошло название фосфор , которое в переводе с гречесжого означает светоносный . Уже при слабом нагревании, для чего достаточно простого трения, фосфор воспламеняется и сгорает, выделяя большое количество теплоты. Фосфор может и [c.442]

    Неравновесность отдельного типа комплексных соединений ведет к тому, что в химии комплексных соединений оказываются не связаиными причинной связью два основных закона химии — закон постоянства состава и закон постоянства свойств. Эти два закона оказались бы непооредственно связанными, если бы процессы перехода одного изотопа в другой, одного аллотропического видоизменения в другое, одного изомера в другой и т. п. происходили с моментальной скоростью, обратимо, т. е. если бы эти процессы были равновесными. [c.13]

    Как уже отмечалось, один и тот же элемент может образовывать несколько простых веществ. Способность химического элемента существовать в виде нескольких простых веществ называется аллотропией. Простые вещества, образованные одним и тем же элементом, называются аллотропическими видоизменениями данного элемента. Эти видоизменения-одного и того же элемента могут отличаться как числом (О2 и Оз), так и расположением (алмаз, графит) одних и тех же атомов в молекуле. Явление аллотропии — наглядное подтверждение различий между простым веществом и химичесьгим элементом. [c.8]

    Иное кристаллическое строение имеет аллотропическое видоизменение углерода — графит. Здесь также имеется атомная решетка, но построенная иначе, чем у алмаза атомы углерода в графите образуют слои, в каждом из которых они размещены по вершинам правильных шестиугольников (рис, У-7). Атомы С в указанных шестичленных ячейках расположены друг от друга на расстоянии 1,43 А. Расстояние же между слоями составляет 3,35 А, т. е. величину, значительно большую. Взаимодействие атомов С, принадлежащих к соседним слоям, уже значительно слабее, чем связь С — С в каждом данном слое. Отдельные слои связаны между собой уже не ковалентно, а образуют единий кристалл графита за счет более слабых дисперсионных ван-дер-ваальсовых сил, характерных для [c.118]

    Аллотропия углерола. Углерод известен в нескольких аллотропических видоизменениях. Из них главные алмаз, графит и уголь (особо чистые препараты). [c.432]

    Характерно, что отдельнУе аллотропические видоизменения одного и того же простого вещества могут в высокой степени различаться между собой по своим полупроводииковым свойствам. Так, селен известен в виде нескольких аллотропных модификаций. Из них только одна — серый (гексагональный) селен — обладает свойствами полупроводника, а в остальных модификациях это изолятор. Далее, углерод в виде алмаза — типичный диэлектрик, в то же время графит — полупроводник. [c.453]

chem21.info

Аллотропные модификации кислорода: сравнительная характеристика и значение

Атомы одного вида могут входить в состав разных веществ. Для элемента, обозначаемого символом «O» (от лат. названия Oxygenium), известно два распространенных в природе простых вещества. Формула одного из них - O2, второго - O3. Это аллотропные модификации кислорода (аллотропы). Есть и другие соединения, менее стабильные (O4 и O8). Понять разницу между этими формами поможет сравнение молекул и свойств веществ.

Многие химические элементы могут существовать в двух, трех или более формах. Каждое из таких видоизменений образовано атомами одного вида. Ученый Я. Берцеллиус в 1841 году первым назвал такое явление аллотропией. Открытую закономерность первоначально применяли только для характеристики веществ молекулярного строения. Например, известны две аллотропные модификации кислорода, атомы которого образуют молекулы. Позже исследователи установили, что видоизменения могут быть среди кристаллов. По современным представлениям, аллотропия является одним из случаев полиморфизма. Различия между формами вызваны механизмами образования химической связи в молекулах и кристаллах. Такую особенность проявляют в основном элементы 13-16 групп периодической таблицы.

Как разное сочетание атомов отражается на свойствах вещества?

Аллотропные модификации кислорода и озона образованы атомами элемента с порядковым номером 8 и таким же количеством электронов. Но они отличаются по строению, что обусловило значительное расхождение в свойствах.

Сравнение кислорода и озона
ПризнакиКислородОзон

Состав молекулы

2 атома кислорода3 атома кислорода
Строение

Агрегатное состояние и цветБесцветный прозрачный газ либо бледно-голубая жидкостьГолубой газ, жидкость синего цвета, темно-фиолетовое твердое вещество
ЗапахОтсутствует

Острый, напоминающий о грозе, свежескошенном сене

Температура плавления (°С)

-219-193
Точка кипения (°С)-183-112

Плотность

(г/л)

1,42,1

Растворимость в воде

Мало растворяетсяЛучше, чем у кислорода

Химическая активность

При обычных условиях стабиленЛегко разлагается с образованием кислорода

Выводы по результатам сравнения: аллотропные модификации кислорода не отличаются по качественному составу. Структура молекулы отражается на физических и химических свойствах веществ.

Одинаковое ли количество кислорода и озона в природе?

Вещество, формула которого O2, встречается в атмосфере, гидросфере, земной коре и живых организмах. Около 20% атмосферы образовано двухатомными молекулами кислорода. В стратосфере на высоте примерно 12–50 км от земной поверхности находится слой, получивший название «озоновый экран». Его состав отражает формула O3. Озон защищает нашу планету, интенсивно поглощая опасные лучи красного и ультрафиолетового спектра Солнца. Концентрация вещества постоянно изменяется, а ее среднее значение низкое - 0,001 %. Таким образом, O2 и O3 - аллотропные модификации кислорода, имеющие значительные различия по распространению в природе.

Молекулярный кислород - важнейшее простое вещество на Земле. Образуется в зеленых частях растений на свету в процессе фотосинтеза. При электрических разрядах природного либо искусственного происхождения двухатомная молекула кислорода распадается. Температура, при которой начинается процесс, составляет около 2000 °С. Часть возникших радикалов соединяется вновь, образуя кислород. Некоторые активные частицы вступают в реакцию с двухатомными молекулами кислорода. В этой реакции получается озон, который также реагирует со свободными радикалами кислорода. При этом возникают двухатомные молекулы. Обратимость реакций приводит к тому, что концентрация атмосферного озона постоянно изменяется. В стратосфере образования слоя, состоящего из молекул O3, связано с ультрафиолетовым излучением Солнца. Без этого защитного экрана опасные лучи могли бы достигнуть поверхности Земли и уничтожить все формы жизни.

Аллотропные модификации кислорода и серы

Химические элементы O (Oxygenium) и S (Sulfur) расположены в одной группе периодической таблицы, для них характерно образование аллотропных форм. Из молекул с разным количеством атомов серы (2, 4, 6, 8) при обычных условиях наиболее устойчивая - S8, напоминающая по форме корону. Ромбическая и моноклинная сера построены из таких 8-атомных молекул.

При температуре 119 °С моноклинная форма желтого цвета образует коричневую тягучую массу - пластическую модификацию. Изучение аллотропных видоизменений серы и кислорода имеет большое значение в теоретической химии и практической деятельности.

В промышленных масштабах используются окислительные свойства разных форм. Озон применяется для обеззараживания воздуха и воды. Но при концентрациях свыше 0,16 мг/м3 этот газ опасен для человека и животных. Молекулярный кислород необходим для дыхания, используется в промышленности и медицине. Важную роль в хозяйственной деятельности играют аллотропы углерода (алмаз, графит), фосфора (белый, красный) и других химических элементов.

fb.ru