Определения параллелепипеда. Основные свойства и формулы. Диагонали параллелепипеда равны или нет


Свойства граней и диагоналей параллелепипеда

Теорема. Во всяком параллелепипеде противоположные грани равны и параллельны.

Так, грани (рис.) BB1С1С и AA1D1D параллельны, потому, что две пересекающиеся прямые BB1 и B1С1 одной грани параллельны двум пересекающимся прямым AA1 и A1D1 другой. Эти грани и равны, так как B1С1=A1D1, B1B=A1A (как противоположные стороны параллелограммов) и ∠BB1С1 = ∠AA1D1.

Теорема. Во всяком параллелепипеде все четыре диагонали пересекаются в одной точке и делятся в ней пополам.

Возьмем (рис.) в параллелепипеде какие-нибудь две диагонали, например, AС1 и DB1, и проведем прямые AB1 и DС1.

Так как ребра AD и B1С1 соответственно равны и параллельны ребру BС, то они равны и параллельны между собой.

Вследствие этого фигура ADС1B1 есть параллелограмм, в котором С1A и DB1 - диагонали, а в параллелограмме диагонали пересекаются пополам.

Это доказательство можно повторить о каждых двух диагоналях.

Поэтому диагональ AC1 пересекается с BD1 пополам, диагональ BD1 с A1С пополам.

Таким образом, все диагонали пересекаются пополам и, следовательно, в одной точке.

Теорема. В прямоугольном параллелепипеде квадрат любой диагонали равен сумме квадратов трех его измерений.

Пусть (рис.) AC1 есть какая-нибудь диагональ прямоугольного параллелепипеда.

Проведя AC, получим два треугольника: AC1С и ACB. Оба они прямоугольные:

первый потому, что параллелепипед прямой, и следовательно, ребро СС1 перпендикулярно к основанию,

второй потому, что параллелепипед прямоугольный, значит в основании его лежит прямоугольник.

Из этих треугольников находим:

AC21 = AC2 + СС21 и AC2 = AB2 + BC2

Следовательно, AC21= AB2 + BC2 + СС21 = AB2 + AD2 + AA21

Следствие. В прямоугольном параллелепипеде все диагонали равны.

razdupli.ru

Диагональ параллелепипеда. Формула. Как найти диагональ параллелепипеда?

Диагональ параллелепипеда. Формула. Как найти диагональ параллелепипеда?

  • Прямоугольным параллелепипедом (ПП) является ни что иное, как призма, основанием у которой прямоугольник. У ПП все диагонали равны, значит любая его диагональ рассчитывается по формуле:

    где

    Можно дать и другое определение, рассматривая декартову прямоугольную систему координат:

    Диагональ ПП это радиус-вектор любой точки пространства, заданной координатами x, y и z в декартовой системе координат. Этот радиус вектор к точке проводится из начала координат. А координатами точки будут проекции радиус-вектора (диагонали ПП) на координатные оси. Проекции совпадают с вершинами данного параллелепипеда.

  • Прямоугольный параллелепипед - это разновидность многогранника, состоящая из 6 граней, в основании которого прямоугольник. Диагональ - это отрезок, который соединяет противоположные вершины параллелограмма.

    Формула нахождения длины диагонали - квадрат диагонали равен сумме квадратов трех измерений параллелограмма.

  • Нашлась в интернете неплохая схема-таблица с полным перечислением всего, что есть в параллепипеде. Есть формула, чтобы найти диагональ, которая обозначается d.

    Есть изображение грани, вершины и других важных для параллепипеде вещей.

  • Если у прямоугольного параллелепипеда известны длина, высота и ширина (a,b,c) то формула для расчета диагонали будет выглядеть таким образом:

    Обычно учителя не предлагают своим ученикам quot;голуюquot; формулу, а прилагают усилия, чтобы те могли самостоятельно ее вывести, задавая наводящие вопросы:

    • что нужно узнать, какими данными мы располагаем?
    • какие свойства имеет прямоугольный параллелепипед?
    • применима ли здесь Теорема Пифагора? Как?
    • достаточное ли данных для применения теоремы Пифагора, или нужны еще какие-то расчеты?

    Обычно после ответа на поставленные вопросы, ученики без труда самостоятельно выводят данную формулу.

  • Диагонали прямоугольного параллелепипеда равны. Также как и диагонали его противоположных граней. Длину диагонали можно вычислить, зная длину рбер параллелограмма, исходящих из одной вершины. Эта длина равна корню квадратному из суммы квадратов длин его рбер.

  • Прямоугольный параллелепипед это один из так званных многогранников, который состоит из 6 граней, каждая из которых является прямоугольником. А диагональ - это отрезок, который соединяет противоположные вершины параллелограмма. Если длину, ширину и высоту прямоугольного параллелепипеда принять за a, b, c соответственно, то формула его диагонали ( D ) будет выглядеть следующим образом: D^2=a^2+b^2+c^2.

  • Диагональ прямоугольного параллелепипеда - это отрезок, соединяющий его противоположные вершины . Итак, у нас есть прямоугольный параллелепипед с диагональю d и со сторонами a, b, c . Одно из свойств параллелепипеда гласит, что квадрат длины диагонали d равен сумме квадратов трх его измерений a, b, c. Отсюда вывод, что длина диагонали может быть легко рассчитана по следующей формуле :

  • Квадрат диагонали, квадратного параллилепипеда (смотрите свойства квадратного параллепипеда) равна сумме квадратов трх его разных сторон (ширине, высоте, толщине), а соответственно диагонали квадратного параллепипеда равна корню из этой суммы.

  • Вспоминаю школьную программу по геометрии, можно сказать так: диагональ параллелепипеда равняется корню квадратному полученному из суммы его всех трех сторон (обозначаются они маленькими буквами a, b, c).

  • Длина диагонали прямоугольного параллепипеда равна корню квадратному из суммы квадратов его сторон.

  • Насколько мне известно еще со школьной программы, класс 9 если не ошибаюсь, и если не изменяет память , то диагональ прямоугольного параллелепипеда ровна корню квадратному суммы квадратов его всех трех сторон.

  • квадрат диагонали равен, сумме квадратов ширины , высоты и длинны , исходя с этой формулы получаем ответ , диагональ равно корню квадратному с суммы его трех разных измерений , буквами они позначаюnсz abc

  • info-4all.ru

    Свойства параллелепипеда, с примерами

    Параллелепипеды бываю прямыми (боковое ребро перпендикулярно основанию) и наклонными.

    Параллелепипед, в основании которого лежит прямоугольник, называется прямоугольным параллелепипедом.

    Грани параллелепипеда, не имеющие общего ребра, называются противоположными ( и ), в противном случае – смежные ( и ).

    Отрезок, соединяющий противоположные вершины, называется диагональю () параллелепипеда.

    Расстояние между плоскостями оснований называют высотой параллелепипеда. В прямом параллелепипеде высота совпадает с боковым ребром.

    Свойства параллелепипеда

    1. Противоположные грани параллелепипеда равны и параллельны.
    2. Все четыре диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам.
    3. Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений (длины, ширины и высоты):

         

    4. Объем параллелепипеда равен произведению площади основания на высоту:

         

    5. Площадь боковой поверхности параллелепипеда равна произведению периметра перпендикулярного сечения на боковое ребро

         

    Примеры решения задач

    Понравился сайт? Расскажи друзьям!

    ru.solverbook.com

    Параллелепипед [wiki.eduVdom.com]

    Призма называется параллелепипедом, если её основания — параллелограммы. См.Рис.1.

    Рис.1

    Свойства параллелепипеда:

    • Противоположные грани параллелепипеда параллельны (т.е. лежат в параллельных плоскостях) и равны.

    • Диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам.

    Параллелепипед является многогранником.

    Смежные грани параллелепипеда – две грани, имеющие общее ребро.

    Противоположные грани параллелепипеда – грани, не имеющих общих рёбер.

    Противоположные вершины параллелепипеда – две вершины, не принадлежащие одной грани.

    Диагональ параллелепипеда – отрезок, который соединяет противоположные вершины.

    Если боковые ребра перпендикулярны плоскостям оснований, то параллелепипед называется прямым.

    Прямой параллелепипед, основания которого – прямоугольники, называется прямоугольным. Призма, все грани которой - квадраты, называется кубом.

    Параллелепипед – призма, у которой основаниями служат параллелограммы.

    Прямой параллелепипед – параллелепипед, у которого боковые ребра перпендикулярны плоскости основания.

    Прямоугольный параллелепипед – это прямой параллелепипед, основаниями которого являются прямоугольники.

    Куб – прямоугольный параллелепипед с равными ребрами.

    Параллелепипедом называется призма, основание которой – параллелограмм; таким образом, параллелепипед имеет шесть граней и все они — параллелограммы.

    Противоположные грани попарно равны и параллельны. Параллелепипед имеет четыре диагонали; все они пересекаются в одной точке и делятся в ней пополам. За основание может быть принята любая грань; объем равен произведению площади основания на высоту: V = Sh.

    Параллелепипед, четыре боковые грани которого — прямоугольники, называется прямым.

    Прямой параллелепипед, у которого все шесть граней — прямоугольники, называется прямоугольным. См.Рис.2.

    Рис.2

    Объем (V) прямого параллелепипеда равен произведению площади основания (S) на высоту (h): V = Sh .

    Для прямоугольного параллелепипеда, кроме того, имеет место формула V=abc , где a,b,c — ребра.

    Диагональ (d) прямоугольного параллелепипеда связана с его ребрами соотношением d2 = а2 + b2 + c2 .

    Прямоугольный параллелепипед – параллелепипед, у которого боковые рёбра перпендикулярны основаниям, а основания прямоугольниками.

    Свойства прямоугольного параллелепипеда:

    • В прямоугольном параллелепипеде все шесть граней – прямоугольники.

    • Все двугранные углы прямоугольного параллелепипеда прямые.

    • Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трёх его измерений (длин трёх рёбер, имеющих общую вершину).

    • Диагонали прямоугольного параллелепипеда равны.

    Прямоугольный параллелепипед, все грани которого — квадраты, называется кубом. Все ребра куба равны; объем (V) куба выражается формулой V=a3, где a — ребро куба.

    Пример №1

    Пример №2

    wiki.eduvdom.com

    Математика для блондинок: Диагонали прямоугольного параллелепипеда

    Вот какой интересный вопрос мне задали: как найти объем прямоугольного параллелепипеда, зная три его диагонали, выходящие из одной вершины? Первая мысль - порыться в математическом справочнике. Но мой любимый справочник молчит. Есть другой кладезь мудрости - Википедия. Русскоязычная страница, посвященная прямоугольному параллелепипеду, поражает своим убожеством. Даже теоремы Пифагора для трехмерного пространства там нет. Обычно в таких случаях я перехожу на точно такую же страницу на английском языке. Ведь математика - это такая штука, которая в переводчиках не нуждается. Чаще всего там гораздо больше разных формул. В этот раз меня ждало великое разочарование. Да, я увидел там теорему Пифагора для прямоугольного параллелепипеда. И всё. Всякой математической фигни в Википедии навалом, а вот самого интересного нет. Печалька.

    Попробуем рассуждать логически. Если кому-то задали такую задачу, значит решение этой задачи есть. Наши математики ещё не доросли до того уровня, когда признаются своим ученикам в своем незнании чего-то. Разве что самые смелые. Остальные тупо повторяют то, чему учили когда-то их. Само собой напрашивается решение: составляем теоремы Пифагора для трех диагоналей граней, объединяем их в систему трех уравнений с тремя неизвестными, решаем и находим размеры прямоугольного параллелепипеда. Брррр! Ужас.

    Теперь порассуждаем с другой стороны. Объем - это результат умножения трех измерений длины. У нас есть три длины диагоналей. Теоретически, из них можно получить объем. Давайте нарисуем наши диагонали прямоугольного параллелепипеда и посмотрим, что можно с ними сделать. Смотрим с разных сторон, чтоб понятнее было.

    На картинке синим цветом выделены те элементы прямоугольного параллелепипеда, которые нам известны. Это диагонали граней. Красным цветом выделено то, что нам не известно. Это диагональ прямоугольного параллелепипеда и его линейные размеры (математики любят еще называть их измерениями параллелепипеда). Ну, и сам объем нам тоже не известен.

    Теперь вооружимся древней теоремой дедушки Пифагора и запишем формулы размеров и диагоналей. Параллелепипед у нас прямоугольный, значит все углы между линейными размерами и гранями прямые. Не забываем также, что наша главная цель - найти объем.

    Картинки несколько отвлекают от формул. Выписываем формулы отдельной кучкой. Математики в это случае с умным видом бы изрекли: "математическое множество формул". Смотрим на формулы и пытаемся хоть что-то соображать. Нам нужно избавиться от измерений и диагонали прямоугольного параллелепипеда, ведь они нам не известны. Вот если бы диагональ параллелепипеда выразить через диагонали боковых граней... Уж очень формулы в правой половине кучки похожи друг на друга.

    Есть! Квадраты диагоналей граней равны двум квадратам диагонали параллелепипеда. Теперь совсем просто. Как кубики в детском садике. Скобочки убираем, скобочки добавляем... И получаем формулу.

    После этого полученную формулу подставляем в формулы с линейными размерами и получаем выражение линейных размеров через диагонали граней. Потом записываем формулу объема.

    Всё. Задача решена. Получилась очень красивая и изящная формула. Из суммы  квадратов двух диагоналей граней вычитается квадрат третьей грани. Потом это перемножается, делится на восемь и получается квадрат объема прямоугольного параллелепипеда. Насколько понимаю я, это одно из основных свойств пространства. Используя принцип перегруппировки сомножителей и слагаемых, можно выводить подобные формулы для многомерных пространств с любым количеством измерений. Любой многомерный объем можно выразить через элементы с меньшим количеством измерений. К сожалению, нам математики об этом ничего не рассказывают. То ли сами ничего не знают, то ли стесняются. А ведь перед нами красота математики в первозданном виде, лишенная всяких заморочек, которые так любят наши учителя.

    www.webstaratel.ru

    Математика для блондинок: Диагональ, параллелепипед и ромб

    Вот такая вот задача. Основанием прямоугольного параллелепипеда является ромб, сторона которого равняется 6 сантиметров, а угол 60 градусов. Высота параллелепипеда равна 8 сантиметров, найдите длину меньшей диагонали параллелепипеда.

    Начинаем рассуждать. Параллелепипед и ромб в основании - это такая коробочка, которая сверху похожа на ромб. У такого параллелепипеда действительно можно нарисовать две пары диагоналей, длины которых будут разными. Из нижней вершины с острым углом в верхнюю вершину с острым углом можно провести длинную диагональ. А вот тупые вершины (не в смысле, что эти вершины ничего не понимают, а в смысле, что эти вершины прихватизировали тупые углы) будут соединяться короткими диагоналями. Таких диагоналей две, их длина одинаковая. Посмотрим на картинке, как выглядит одна из таких диагоналей.

    Диагональ прямоугольного параллелепипеда показана красным цветом, диагонали ромба основания показаны синим цветом. Если очень сильно постараться, напрячь свое воображение и внимательно присмотреться к верхней картинке, то можно увидеть прямоугольный треугольник. Параллелепипед у нас прямоугольный. Значит, боковое ребро расположено под прямым углом к основанию. Диагональ основания (синенькая), диагональ параллелепипеда (красненькая) и ребро (черненькое, мелированое, не успело в парикмахерской перекраситься) образуют этот прямоугольный треугольник. А там, где есть прямоугольный треугольник, там царствует теорема древнего Пифагора. Всегда, не зависимо от того, кого вы в своей стране избрали царём или президентом.

    В низу, под картинкой, записана эта самая знаменитая теорема применительно к нашему случаю. Не удивляйтесь, если в таком виде вы встречаете теорему Пифагора впервые. Во-первых, не все учились с вами в одном классе и они могут не знать, как именно вас учили правильно записывать теорему Пифагора. Во-вторых, в теореме Пифагора главным является не принятая кем-то система закорючек, а смысл - берем две перпендикулярных штучки, возводим в квадрат, складываем в кучку и получаем третью штучку в квадрате. У нас квадрат ребра и квадрат диагонали ромба чудненько складываются в квадрат диагонали параллелепипеда.

    Теперь нам необходимо разобраться с диагональю ромба. Берем нашу коробочку в форме прямоугольного параллелепипеда, открываем крышечку и заглядываем внутрь. Почему мы заглядываем внутрь коробочки а не изучаем саму крышечку? Безотказно работает теорема любопытной обезьяны. Попробуйте что-нибудь отрыть и не заглянуть внутрь. А зачем тогда открывали?! Любой, даже безграмотный, математик вам скажет, что теорема требует доказательства. Один момент. Попросите свою маму купить вам что-то в коробочке. Когда она вам её принесет, вы, с закрытыми глазами, откройте крышечку коробочки, а саму коробочку, не глядя, выбросьте в мусор. Не получилось? Всё, теорема доказана.

    И так, мы остановились на том, что, встав в позу теоремы Пифагора, мы заглядываем внутрь коробочки. Что мы там видим? Если вы верили в Конец Света 2012, тогда там спрятаны припасы на всю оставшуюся жизнь. Вынимайте их из коробки и можете смело доедать (вы ещё долго будете извлекать свои припасы из самых неожиданных мест). Пока вы не придумаете следующую дату Конца Света, вам ничто не угрожает. С пророчеством советую поторопиться. Вокруг очень много жаждущих славы пророков, а ещё больше желающих впихнуть вам партию залежалого товара. Если же вы не верите в Конец Света, то в коробочке были новогодние сладости, которые уже закончились.

    Всё, наша коробочка пустая и мы можем внимательно изучить донышко. Оно имеет форму ромба, у которого можно провести диагонали. При пересечении, эти диагонали образуют чудненькие треугольнички. Аж четыре штуки. Мы люди не жадные, нам достаточно одного. Что мы знаем об этом треугольничке (на картинке ниже он закрашен в чудный цвет)? Этот треугольник точно не Бермудский и не любовный. А какой? Лезем в Интернет и ищем свойства ромба. Мы их когда-то учили в школе, но это было так давно... В Интернете полно всякой ерунды, но есть и кое-то интересное нам. Все стороны ромба одинаковые. Диагонали ромба разные. Пересекаются диагонали под прямым углом. Точка пересечения диагоналей делит их на две равные половинки. Каждая диагональ делит угол в вершине поровну (у ромбов и квадратов диагонали не жадные). Кажется, всё. Прочая ерунда о ромбах нас не интересует.

    И так, в результате наших научных исследований мы установили, что наш треугольник является прямоугольным. Гипотенуза у него равна длине стороны ромба, катеты равняются половинкам диагоналей. Снова примеряем деда Пифагора. Длину гипотенузы мы знаем, а вот с двумя катетами проблема. Какой-то лентяй не потрудился измерить диагонали. Зато это чудо умудрилось вымерить величину угла в одной вершине. В традиционном виде теорема Пифагора не катит (это не опечатка, это в смысле "не подходит"). Остается только тригонометрия. Она тоже работает в прямоугольных треугольниках, но придумали её математики исключительно для того, чтобы издеваться над детьми. Лично мне так кажется. Думаю, эта идея соберет не маленькую группу Вконтакте. "Я ненавижу тригонометрию" - красивое название для группы, дарю.

    Как сказали бы врачи, показаниями к применению тригонометрии является невозможность применения теоремы Пифагора из-за отсутствия двух размеров треугольника и наличие значения одного из углов. Если бы у нас не было угла, тогда и медицина была бы бессильна. Как применить тригонометрию? Не будем рыскать по Интернету, я покажу вам более надежный инструмент. Назвал я его "портрет тангенса". Приставляем его к вершине треугольника, значение угла в которой нам известно. Горизонтальную палочку располагаем параллельно линии, от которой мы отсчитываем угол (у нас это горизонтальная диагональ). Потом вспоминаем "тангенс - это синус на косинус". Верхняя палочка портрета обозначает синусы, нижняя палочка - косинусы. Нам нужно найти вертикальный катет треугольника. Значит, для этого гипотенузу нужно умножить на синус угла. Если бы нам нужен был горизонтальный катет, мы бы умножали на косинус этого же угла. Полная длина вертикальной диагонали ромба (синенькая) получается равной двум длинам катета треугольника.

    Всё. С задачей мы разобрались. Обозначаем диагональ ромба буквой "f", сторону - буквой "а", угол - буквой "альфа". Диагональ параллелепипеда мы обозначим буквой "d", а его высоту - буквой "h". Теперь записываем формулы для решения, подставляем в них известные нам значения и получаем результат. Длина меньшей диагонали получилась равной 10 сантиметров. Можно, конечно, вычислить и длину большей диагонали, но теорема любопытной обезьяны в этом случае наотрез отказывается работать. Она (теорема) точно знает, что ничего вкусненького или интересного в результате вычислений мы не получим.

    www.webstaratel.ru

    Параллелепипед. Свойства и формулы. Примеры решения задач

    Параллелепипед – это геометрическая фигура, все 6 граней которой представляют собой параллелограммы.

    В зависимости от вида этих параллелограммов различают следующие виды параллелепипеда:

    • прямой;
    • наклонный;
    • прямоугольный.

    Прямым параллелепипедом называют четырехугольную призму, ребра которой составляют с плоскостью основания угол 90 °.

    Прямоугольным параллелепипедом называют четырехугольную призму, все грани которой являются прямоугольниками. Куб есть разновидность четырехугольной призмы, у которой все грани и ребра равны между собой.

    Свойства параллелепипеда

    Особенности фигуры предопределяют ее свойства. К ним относят 4 следующих утверждений:

    1. Противолежащие ребра и грани фигуры параллельны и равны между собой. 
    2. Углы сонаправленных сторон равны между собой. На фотографии ниже представлено графическое изображение сонапрвленных лучей OA и O1А1. Прямая рассекает пространство на две плоскости. Если лучи расположены в одной полуплоскости и параллельны друг другу, то их называют сонаправленными. 
    3.  4 главные диагонали параллелепипеда пересекаются в одной точке внутри фигуры. Любой отрезок, проведенный между двумя плоскостями граней, через данную точку будет поделен ею пополам. Следствием данного свойства можно сформулировать следующим образом: плоскости, в которых лежат главные диагонали параллелепипеда, симметрично делят геометрическое тело. 
    4. Согласно теореме Пифагора, квадрат диагонали параллелепипеда равен сумме квадратов ее измерений. 

    Запомнить все приведенные свойства просто, они легки для понимания и выводятся логически исходя из вида и особенностей геометрического тела. Однако, незамысловатые утверждения могут быть невероятно полезны при решении типовых заданий ЕГЭ и позволят сэкономить время необходимое для прохождения теста.

    Формулы параллелепипеда

    Для поиска ответов на поставленную задачу недостаточно знать только свойства фигуры. Также могут понадобиться и некоторые формулы для нахождения площади и объема геометрического тела.

    Площадь оснований находится также как и соответствующий показатель параллелограмма или прямоугольника. Выбирать основание параллелограмма можно самостоятельно. Как правило, при решении задач проще работать с призмой, в основании которой лежит прямоугольник.

    Формула нахождения боковой поверхности параллелепипеда, также может понадобиться в тестовых заданиях.

    Примеры решения типовых заданий ЕГЭ

    Задание 1.

    Дано: прямоугольный параллелепипед с измерениями 3, 4 и 12 см.Необходимо найти длину одной из главных диагоналей фигуры.Решение: Любое решение геометрической задачи должно начинаться с построения правильного и четкого чертежа, на котором будет обозначено «дано» и искомая величина. На рисунке ниже приведен пример правильного оформления условий задания.

    Рассмотрев сделанный рисунок и вспомнив все свойства геометрического тела, приходим к единственно верному способу решения. Применив 4 свойство параллелепипеда, получим следующее выражение:

    После несложных вычислений получим выражение b2=169, следовательно, b=13. Ответ задания найден, на его поиск и чертеж необходимо потратить не более 5 минут.

    Задание 2.

    Дано: наклонный параллелепипед с боковым ребром 10 см, прямоугольник KLNM с измерениями 5 и 7 см, являющийся сечением фигуры параллельным указанному ребру.Необходимо найти площадь боковой поверхности четырехугольной призмы.Решение: Сначала необходимо зарисовать дано.

    Для решения данного задания необходимо применить смекалку. Из рисунка видно, что стороны KL и AD – неравны, как и пара ML и DC. Однако, периметры данных параллелограммов очевидно равны.

    Следовательно, боковая площадь фигуры будет равна площади сечения помноженной на ребро AA1, так как по условию ребро перпендикулярно сечению. Ответ: 240 см2.

    Похожие статьи

    Рекомендуем почитать:

    karate-ege.ru