Биографии великих и известных людей. Исак ньютон


Исаак Ньютон, биография, история жизни, изобретения

Ньютон родился в семье фермера, но ему повезло с хорошими друзьями и он смог вырваться из сельской жизни в научную среду. Благодаря этому появился великий учёный, который смог открыть не один закон физики и астрономии и сформулировать множество важных теорий в отраслях математики и физики.

Семья и детство

Исаак был сыном фермера из Вулсторпа. Его отец был из небогатых крестьян, которые волею случая нажили землю и благодаря этому преуспели. Но до рождения Исаака его отец не дожил — и умер за несколько недель до этого. Мальчика назвали в его честь.

Когда Ньютону было три года, его мать снова вышла замуж — за почти втрое старшего за себя богатого фермера. После рождение ещё троих детей в новом браке, Исааком начал заниматься брат его матери — Уильям Эйскоу. Но дать хоть какое-либо образование дядя Ньютону не мог, поэтому мальчик был предоставлен сам себе — играл собственноручно сделанными механическими игрушками, кроме того он был немного замкнутым.

Новый муж матери Исаака прожил с ней всего семь лет и умер. Половина наследства досталась вдове, и та сразу переписала всё на Исаака. Несмотря на то, что мать вернулась домой, внимания мальчику она почти не уделяла, поскольку младшие дети требовали его ещё больше, а помощниц у неё не было.

Двенадцатилетним Ньютон пошёл учиться в школу в соседнем городке Грэнтем. Чтобы каждый день не возвращаться несколько миль домой, его поселили в доме у местного аптекаря мистера Кларка. В школе мальчик «расцвёл»: он жадно хватался за новые знания, учителя были в восторге от его ума и способностей. Но уже через четыре года матери потребовался помощник и она решила, что 16-летний сын вполне сможет справиться с фермой.

Но даже вернувшись домой, Исаак не спешит решать хозяйственные проблемы, а читает книги, пишет стихи и продолжает заниматься придумыванием различных механизмов. Поэтому знакомые обратились к его матери, чтобы та вернула парня в школу. Был среди них и преподаватель Тринити-колледжа, знакомый того самого аптекаря, у которого Исаак жил во время учёбы. Общими усилиями Ньютон поехал поступать в Кембридж.

Университет, чума и открытия

В 1661 году парень успешно прошёл экзамен с латыни, и его зачислили в колледж Святой Троицы при Кембриджском университете как студента, который вместо оплаты за учёбу выполняет разные поручение и работы на благо альма матер.

Поскольку жизнь в Англии в те годы была весьма тяжёлой, то не лучшим делом обстояли дела и в Кембридже. Биографы сходятся на мысли, что именно годы в колледже закалили характер учёного и его желание доходить до сути предмета собственными усилиями. Через три года он уже добился стипендии.

В 1664 году одним из преподавателей Ньютона стал Исаак Барроу, который привил ему любовь к математике. В те годы Ньютон делает своё первое открытие в математике, известное сейчас как Бином Ньютона.

Через несколько месяцев учёбу в Кембридже прекратили из-за эпидемии чумы, которая разрасталась в Англии. Ньютон вернулся домой, где продолжал свои научные труды. Именно в те годы он начал разрабатывать закон, который со времен получил имя Ньютона-Лейбница; в родном доме он открыл, что белый цвет — не что иное, как смесь всех цветов, и назвал явление «спектром». Тогда же он открыл свой известный закон всемирного тяготения.

То, что было чертой Ньютоновского характера, и было не слишком полезно для науки — это его излишняя скромность. Некоторые свои исследования он публиковал лишь через 20-30 лет после их открытий. Некоторые нашлись спустя три столетия после его смерти.

В 1667 Ньютон вернулся в колледж, а через год стал магистром, его пригласили поработать преподавателем. Но читать лекции Исааку было не слишком по душе, да и особенной популярностью среди учеников он не пользовался.

В 1669 году разные математики начали публиковать свои варианты разложений в бесконечные ряды. Несмотря на то, что Ньютон разработал свою теорию на эту тему уже много лет назад, он её нигде не публиковал. Опять-таки из-за скромности. Но его бывший преподаватель, а теперь уже и друг Барроу уговорил Исаака. И тот написал «Анализ с помощью уравнений с бесконечным числом членов», где изложил коротко и по сути свои открытия. И хотя Ньютон просил не называть своего имени, Барроу не удержался. Так о Ньютоне впервые узнали ученые всего мира.

В этом же году он переходит на место Барроу и становится профессором математики и оптики в колледже Святой Троицы. А поскольку Барроу оставил ему свою лабораторию, Исаак увлекается алхимией и проводит много опытов на эту тему. Но не оставил он и исследование со светом. Так, он разработал свой первый телескоп-рефлектор, который давал увеличение в 40 раз. Новой разработкой заинтересовались при дворе короля, и после презентации перед учёными, механизм оценили как революционный и очень необходимый, особенно для мореплавателей. А Ньютона в 1672 году приняли в Королевское научное общество. Но уже после первой полемики о спектре, Исаак решил покинуть организацию — его утомляли споры и дискуссии, он привык работать в одиночку и без лишней суеты. Его едва удалось уговорить остаться в Королевском обществе, но контакты с ними у учёного стали минимальными.

Рождение физики как науки

В 1684-1686 годах Ньютон писал свой первый великий печатный труд — «Математические начала натуральной философии». Опубликовать её его уговорил ещё один учёный — Эдмонд Галлей, который сперва предложил разработать формулу эллиптического движение по орбите планет, используя формулу закона тяготения. И тут оказалось, что Ньютон уже всё давно решил. Галлей не отступил, пока не выбил из Исаака обещание опубликовать работу, и тот согласился.

Писал её два года, финансировать публикацию согласился сам Галлей, и в 1686 году она наконец увидела мир.

В этой книге учёный впервые использовал понятия «внешняя сила», «масса» и «количество движения». Ньютон давал три базовые закона механики, делал выводы из законов Кеплера.

Первый тираж в 300 экземпляров раскупили за четыре года, что по тогдашним меркам было триумфом. Всего книгу переиздавали трижды ещё при жизни учёного.

Признание и успех

В 1689 Ньютона избирают членом парламента университета Кембриджа. Ещё через год его перебирают вторично.

В 1696, благодаря содействию своего бывшего ученика, а сейчас президента Королевского общества и канцлера Казначейства  Монтегю, Ньютон становится хранителем Монетного двора, для чего переезжает в Лондон. Вместе они приводят в порядок дела Монетного двора и проводят денежную реформу с перечеканкой монет.

В 1699 году в его родном Кембридже начали преподавать Ньютоновскую систему мира, ещё через пять лет такой же курс лекций появился и в Оксфорде.

Его также приняли в Парижский научный клуб, сделав Ньютона почётным иностранным членом общества.

Последние годы и смерть

В 1704 Ньютон издал свой труд «Об оптике», через год королева Анна возвела его в рыцари.

Последние годы жизни Ньютона ушли на допечатку «Начал» и подготовку обновлений для следующих изданий. Кроме того он писал «Хронологию древних царств».

В 1725 году его здоровье серьёзно ухудшилось и он переехал из шумного Лондона в Кенсингтон. Умер там же, во сне. Его тело похоронили в Вестминстерском аббатстве.

Интересные факты

  • Возведение Ньютона в рыцари было первым в английской истории, когда звание рыцаря было присвоено за научные заслуги. Ньютон обзавёлся собственным гербом и не очень достоверной родословной.
  • К концу жизни Ньютон рассорился с Лейбницем, что пагубно сказалось на науке британской и европейской в частности — не было сделано много открытий из-за этих ссор.
  • В честь Ньютона назвали единицу силы в Международной системе единиц (СИ).
  • Легенда о яблоке Ньютона широко распространилась благодаря Вольтеру.

Титулы и награды

  • 1705 — получил звание рыцаря.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

theperson.pro

Исаак Ньютон - великий ученый

Не знаю, как меня воспринимает мир, но сам себе я кажусь только мальчиком, играющим на морском берегу, который развлекается тем, что время от времени отыскивает камешек более пёстрый, чем другие, или красивую ракушку, в то время как великий океан истины расстилается передо мной неисследованным.

И. Ньютон

В Лондоне в Вестминстерском аббатстве покоится прах великого математика и физика, астронома и механика Исаака Ньютона. Надпись на могиле ученого гласит: «Здесь покоится сэр Исаак Ньютон, дворянин, который почти божественным разумом первый доказал с факелом математики движение планет, пути комет и приливы океанов.

Исаак Ньютон (Isaac Newton)

Он исследовал различие световых лучей и появляющиеся при этом различные свойства цветов, чего ранее никто не подозревал. Прилежный, мудрый и верный истолкователь природы, древности и Св. писания, он утверждал своей философией величие Всемогущего Бога, а нравом выражал евангельскую простоту.

Пусть смертные радуются, что существовало такое украшение рода человеческого».

По словам А. Энштейна Ньютон «... оказал своими трудами глубокое и сильное влияние на всё мировоззрение в целом».

Действительно, роль Исаака Ньютона в развитии математики и физики настолько велика, что восхищение перед его гением только увеличивается.

Величайший английский учёный, заложивший основы современного естествознания, создатель классической физики, член Лондонского королевского общества родился 25 декабря 1642 года в местечке Вульсторп, вблизи городка Грэнтэм, что в 200 километрах к северу от Лондона. Ньютон рассказывал о своем рождение так: «По словам матери, я родился таким маленьким, что меня можно было бы выкупать в большой пивной кружке». Однако мальчик вырос хорошо развитым и здоровым. Впоследствии факт рождение в канун Рождества Христова Ньютон расценивал как знак свыше.

По окончании школы в 1661 Ньютон поступил в Тринити-колледж (Колледж святой Троицы) Кембриджского университета. К этому времени уже сложился целеустремленный и могучий характер Ньютона. Научная дотошность, стремление проникнуть в самую суть предмета, нетерпимость к обману и лжи, равнодушие к славе стали отличительными чертами характера великого ученого.

«Если я видел дальше других, то потому, что стоял на плечах гигантов» — говорил Ньютон. Главной научной опорой и вдохновителями творчества Ньютона в наибольшей степени были такие великие физики, как Галилей, Декарт и Кеплер. Доведя до конца их труды, Ньютон объединил их в универсальную систему мира. Также влияние на становление гения Ньютона оказали работы Евклида, Ферма, Гюйгенса, Валлиса и его учитель Барроу.

Рефлектор Ньютона

Открытия и достижения Ньютона открыли новую эпоху в физике и математике. С именем Ньютона связывают появление в математике аналитических методов, в физике — построение адекватных математических моделей природных процессов и их всестороннее исследование с помощью нового математического аппарата.

Будучи студентом Кембриджского университета Ньютон сделал свои первые математические открытия. Среди них: классификация алгебраических кривых 3-го порядка (кривые 2-го порядка исследовал Ферма) и биномиальное разложение произвольной степени. Последнее из перечисленных открытий послужило отправной точкой в создании знаменитой теории бесконечных рядов, которая впоследствии станет эффективным и мощным инструментом математического анализа.

Ньютон доказал, что разложение в ряд является общим и главным методом анализа функции. Мастерски используя этот метод, Ньютон с легкостью решал уравнения, в том числе и дифференциальные, исследовал поведение функций, сумел получить разложение для всех стандартных функций.

Независимо от Готфрида Лейбница Ньютон разработал дифференциальное и интегральное исчисление.

Кроме того, Ньютон глубоко исследовал разностные методы.

Наиболее полное изложение принципов анализа Ньютон было опубликовано в работе «О квадратуре кривых» 1704 года как приложении к монографии «Оптика». Это первый научный труд Ньютона, который стал доступен всем. В нем Ньютон указал производные высших порядков, значения интегралов разнообразных рациональных и иррациональных функций, примеры решения дифференциальных уравнений 1-го порядка.

Следуя уговорам своих коллег, Ньютон публикует в 1707 году книгу «Универсальная арифметика». В ней великий математик приводит разнообразные численные методы. Его знаменитый метод позволял находить корни уравнений по упрощенной форме и с гораздо большей точностью (опубликован в «Алгебре» Валлиса, 1685).

Могила Ньютона в Вестминстерском аббатстве

В 1711 году Ньютон, спустя 40 лет после написания, опубликовал науный труд под названием «Анализ с помощью уравнений с бесконечным числом членов». Здесь Ньютон исследовал алгебраические и «механические» кривые (циклоид, квадратрис) и частные производные.

В сочинении «Метод разностей» Ньютон определил интерполяционную формулу для проведения через (n + 1) точки с равноотстоящими или неравноотстоящими абсциссами многочлена n-го порядка.

В 1736 году уже после смерти великого ученого издается научный труд «Метод флюксий и бесконечных рядов», в котором приводятся многочисленные примеры поиска экстремумов, касательных и нормалей, вычисление радиусов и центров кривизны в декартовых и полярных координатах, отыскание точек перегиба и прочее.

В заслугу Ньютона также следует отнести не только разработку методов анализа, но и обоснование его принципов. Именно Ньютон предложил общую теорию предельных переходов, под названием «метод первых и последних отношений». Эта теории подробно изложена в 11 леммах книги I «Начал».

Больших успехов Ньютон достиг в механике. Наиболее важным достижением Ньютона в аксиоматической механике является решение двух фундаментальных задач:

  • Создание для механики аксиоматической основы, благодаря которой наука становится в ряд строгих математических теорий.
  • Создание динамики, которая связывает поведение тела с характеристиками внешних воздействий на него (сил).

Особенно ценно открытие Ньютона, связанное с опровержением античных представлений о том, что земные и небесные тела движутся под воздействием разных законов. В разработанной Ньютоном модели мира Вселенная подчинена трем единым законам:

  • Всякое тело продолжает удерживаться в состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние.
  • Изменение количества движения пропорционально приложенной силе и происходит по направлению той прямой, по которой эта сила действует.
  • Действию всегда есть равное и противоположное противодействие, иначе, взаимодействия двух тел друг на друга между собой равны и направлены в противоположные стороны.

Более того, Ньютон утверждал в своих «Началах», что пространство и время являются абсолютными понятиями, едиными для всей Вселенной.

Страница «Начал» Ньютона с аксиомами механики

Именно Ньютон дает четкие определения многим физическим понятиям, в том числе: количество движения и сила. Вводит в физику понятие массы как меры инерции и гравитационных свойств. До него физики использовали понятие вес.

Вы наверняка помните, как Ньютон открыл знаменитый «закон тяготения». Надо сказать, что идея всеобщей силы тяготения была отнюдь не новой, однако первым, кто смог ясно и математически точно доказать связь закона тяготения и движения планет. Работы Ньютона в этой области положили начало новой науке — динамике.

Следует отметить тот факт, что Исааку Ньютону принадлежит заслуга открытия причины приливов: притяжение Луны. Более того, Нььютон сумел рассчитать точную массу Луны.

Интересно узнать, что в течение многолетних наблюдений, Ньютон определил, что Земля сплюснута у полюсов, из-за чего земная ось под воздействием притяжения Луны и Солнца медленно (период 26000 лет) смещается. Таким образом, было найдено научное объяснение одной из древнейших проблем «предварения равноденствий».

В оптике Ньютон изобрел первый в мире зеркальный телескоп (рефлектор). Более того, он открыл дисперсию света, доказал, что белый свет раскладывается на цвета радуги после преломления лучей при прохождении через призму. Именно Ньютон заложил основы правильной теории цветов.

Эти и другие открытия Ньютона в области математики и физике заставляют преклонить голову перед гением ученого. На статуе, воздвигнутой Ньютону в 1755 г. в его альма-матер — Тринити-колледже, высечены стихи из Лукреция:

Разумом он превосходил род человеческий (Qui genus humanum ingenio superavit).

Поделиться ссылкой

sitekid.ru

Великий ученый Исаак Ньютон

Исаак Ньютон - это английский ученый, историк, физик, математик и алхимик. Родился он в семья фермера, в Вулсторпе. Отец Ньютона умер перед его рождением. Мать вскоре после смерти любимого мужа вышла второй раз замуж за священника, который жил в соседнем городке, и переехала к нему. Исаак Ньютон, краткая биография которого написана ниже, и его бабушка остались в Вулсторпе. Этим душевным потрясением некоторые исследователи объясняют желчный и нелюдимый характер ученого.В двенадцать лет Исаак Ньютон поступил в Грантемскую школу, в 1661 году - в тринити-колледж пресвятой Троицы Кембриджского университета. Чтобы заработать деньги, молодой ученый выполнял обязанности слуг. Учителем математики в колледже был И.Барроу.

Во время чумной эпидемии в 1965-1967 годах Исаак Ньютон находился в своей родной деревне. Эти годы были самыми продуктивными в его научной деятельности. Именно здесь у него сложились идеи, которые в последствии привели Ньютона к созданию зеркального телескопа (своими силами Исаак Ньютон изготовил его в 1968 году) и к открытию закона о всемирном тяготении. Также здесь он провел опыты, заключающиеся в разложении света.

В 1668 году ученому присвоена степень магистра, а через год Барроу передал ему свою кафедру (физико-математическую). Исаак Ньютон, биография которого представляет для многих исследователей интерес, занимал ее до 1701 года.

В 1671 году Исаак Ньютон изобретает свой второй телескоп зеркальный. Он был больше и лучше, чем предыдущий. На современников демонстрация этого телескопа произвела очень сильное впечатление. Вскоре после этого Исаак Ньютон избирается членом королевского общества. В то же время он представил научному обществу свои исследования по поводу новой теории цветов и света, которые вызвали острые разногласия с Робертом Гуком.

Также Исаак Ньютон разрабатывал основа математического анализа. Об этом стало известно из переписки ученых Европы, хотя сам ученый по этому поводу не опубликовал ни одной записи. В 1704 году была издана первая публикация об основах анализа, а полное руководство вышло в 1736 году, посмертно.

В 1687 году Исаак Ньютон опубликовал свой огромный труд «Начала математические натуральной философии» (более краткое название - «Начала»), который стал основой  всего математического естествознания.

В 1965 году Исаак Ньютон становится смотрителем Монетного двора. Этому способствовало то, что когда-то ученый интересовался трансмутацией металлов и алхимией. Ньютон руководил перечеканкой всех английских монет. Именно он привел в порядок монетное дело Англии, пребывавшее до тех пор в расстроенном виде. За это в 1966 году ученый получил пожизненное звание директора английского двора, которое в то время высоко оплачивалось. В этом же году Исаак Ньютон стал членом Парижской АН. В 1705 году великая королева Анна за грандиозные научные труды возвела его в звание рыцаря.

В последние годы жизни Ньютон много времени уделял теологии, а также библейской и античной истории. Похоронен великий ученый в национальном английском пантеоне - Вестминстерском аббатстве.

fb.ru

Краткая биография Исаака Ньютона самое главное

Во многих высших учебных заведениях можно заметить портрет Исаака Ньютона – известного математика и физика (также этот учёный занимался алхимией). Отцом учёного был фермер. Исаак часто болел, сторонился сверстников, воспитывала его бабушка. Будущий учёный учился в Грантемской школе, а в 1661 поступил в колледж Святой Троицы (ныне Тринити-колледж) небезызвестного Кембриджского университета. В 1665 Ньютон становится бакалавром, а тремя годами спустя магистром. Во время учёбы Исаак проводил опыты и сконструировал зеркальный телескоп.

В 1687 Исаак публикует свой труд, посвящённый математическим началам натуральной философии, в котором были описаны законы динамики, основы учения сопротивления газов и жидкостей. Более тридцати лет Исаак был главой физико-математической кафедры Кембриджа, а в начале восемнадцатого столетия королева Анна пожаловала Ньютону рыцарское звание. Много десятилетий Исаак испытывал серьёзные денежные затруднения, и лишь в 1695-м его финансовое положение улучшается после занятия вакансии смотрителя Монетного двора.

Более двух веков Исаака Ньютона считают одним из самых знаменитых учёных. В течение своей жизни он успел сделать существенный вклад во многие современные науки. Он сформулировал важнейшие законы классической механики, объяснил механизм передвижения небесных тел. В 1692 году учёного настигло умственное расстройство, спровоцированное пожаром, уничтожившим солидное количество его рукописей. После того как болезнь отступила, Ньютон продолжил заниматься наукой, но с меньшей интенсивностью.

Ньютон прожил более восьмидесяти лет. В заключительные годы своей жизни Исаак посвятил немало часов теологии, а также библейской истории. Останки великого учёного были захоронены в Вестминстерском аббатстве.

Достижение и личная жизнь

Биография Исаака Ньютона о главном

Имя Исаака Ньютона (1642-1727 гг.) золотыми буквами вписано в историю мировой науки, именно ему принадлежат величайшие открытия в физике, астрономии, механике, математике – формулировка основных постулатов механики, открытие явления всемирного тяготения, английский ученый также заложил основы для последующих научных разработок в области оптики, акустики. Ньютон, помимо физических экспериментов, также был знатоком алхимии, истории. Деятельность ученого зачастую слабо оценивалась его современниками, сегодня же невооруженным глазом видно, что его научные взгляды значительно превосходили уровень средневековой науки.

Исаак родился в 1642 году в английской деревушке Вулсторп (графство Линкольншир) в семье небогатого фермера. Мальчик был достаточно хил и болезненен, физически слабым, воспитывался бабушкой, был очень замкнутым и нелюдимым. В возрасте 12 лет мальчик поступил на обучение в школу в Грантеме, спустя шесть лет, окончив ее, поступил в Кембриджский университет, в котором ему преподавал сам И. Барроу – известный ученый – математик.

В 1665 году Ньютон получил степень бакалавра и до 1667 года находился в родном Вулсторпе: именно в этот период ученый активно занимался научными разработками – опытами по разложению света, изобретением зеркального телескопа, открытием закона всемирного тяготения и т.д. В 1668 году ученый вернулся в родной университет, получил в нем магистерскую степень и при поддержке И. Барроу возглавил физико- математическую кафедру родного университета (вплоть до 1701 г.).

Спустя некоторое время, в 1672 году, молодой изобретатель стал членом одного из крупнейших в мире научных сообществ в Лондоне . В 1687 году вышел в свет его грандиознейший труд под названием «Математические начала натуральной философии», где ученый произвел обобщение накопленного предыдущими учеными (Галилео Галилей, Рене Декарт, Христиан Гюйгенс и др.) научного опыта, а также самостоятельные научные выводы и создал единую систему механики, которая и по сей день является фундаментом физики как науки.

Также И. Ньютоном были сформулированы известные 3 постулата, аксиомы, которые сегодня известны под названием «трех законов Ньютона»: закон инерции, основной закон динамики, закон равенства при взаимодействии двух материальных тел. «Математические начала натуральной философии» сыграли огромную роль в развитии физики, дали толчок к дальнейшему изучению математики, механики, оптики.В 1689 году у Исаака Ньютона умирает мать, в 1692 году произошел пожар, который уничтожил большое число научных разработок ученого – эти события стали причиной большого интеллектуального расстройства изобретателя, в этот период его научная деятельность приходит в упадок.

В 1695 году Ньютон был приглашен на государственную службу, стал смотрителем государственного Монетного двора и руководил перечеканкой монет в королевстве. За заслуги перед короной ученый в 1699 году был представлен к почетному званию директора Монетного двора, а также стал членом Академии наук г.Парижа. В начале 18-го столетия Исаак Ньютон находился на пике славы, возглавил Лондонское королевское общество, в 1705 году был удостоен рыцарского звания, то есть, получил дворянский титул.

Ученый на исходе своей жизни отошел от научной деятельности, находился на государственной службе вплоть до 1725 года.Здоровье ученого с каждым годом все ухудшалось: весной 1727 года в городке Кенсингтон, близ Лондона, гениальный ученый Исаак Ньютон скончался во сне. После смерти ученый был удостоен больших почестей, был похоронен в Вестминстерском аббатстве рядом с английскими королями и видными политическими лидерами государства. Вклад Ньютона в развитие науки остается неоценимо важным и по сей день, его труды являются фундаментальной базой и для современных исследователей.

 Его великое открытие для детей

Интересные факты и даты из жизни

uchim-klass.ru

Исаак Ньютон - это... Что такое Исаак Ньютон?

Сэр Исаа́к Нью́тон [1] (англ. Sir Isaac Newton, 25 декабря 1642 — 20 марта 1727 по юлианскому календарю, использовавшемуся в Англии в то время; или 4 января 1643 — 31 марта 1727 по григорианскому календарю) — великий английский физик, математик и астроном. Автор фундаментального труда «Математические начала натуральной философии» (лат. Philosophiae Naturalis Principia Mathematica), в котором он описал закон всемирного тяготения и так называемые Законы Ньютона, заложившие основы классической механики. Разработал дифференциальное и интегральное исчисление, теорию цветности и многие другие математические и физические теории.

Биография

Исаак Ньютон, сын мелкого, но зажиточного фермера, родился в деревне Вулсторп (графство Линкольншир), в год смерти Галилея и в канун гражданской войны. Отец Ньютона не дожил до рождения сына. Мальчик родился болезненным, до срока, но всё же выжил. Факт рождения под Рождество Ньютон считал особым знаком судьбы. Несмотря на тяжёлые роды, Ньютон прожил 84 года.

Тринити-колледж, часовая башня

Покровителем мальчика стал его дядя по матери, Вильям Эйскоу. В детстве Ньютон, по отзывам современников, был замкнут и обособлен, любил читать и мастерить технические игрушки: часы, мельницу и т. п. По окончании школы (1661) он поступил в Тринити-колледж (Колледж святой Троицы) Кембриджского университета. Уже тогда сложился его могучий характер — научная дотошность, стремление дойти до сути, нетерпимость к обману и угнетению, равнодушие к публичной славе.

Научной опорой и вдохновителями творчества Ньютона в наибольшей степени были физики: Галилей, Декарт и Кеплер. Ньютон завершил их труды, объединив в универсальную систему мира. Меньшее, но существенное влияние оказали другие математики и физики: Евклид, Ферма, Гюйгенс, Валлис и его непосредственный учитель Барроу.

Похоже на то, что значительную часть своих математических открытий Ньютон сделал ещё студентом, в «чумные годы» 1664—1666. В 23 года он уже свободно владел методами дифференциального и интегрального исчислений, включая разложение функций в ряды и то, что впоследствии было названо формулой Ньютона-Лейбница. Тогда же, по его утверждению [2], он открыл закон всемирного тяготения, точнее, убедился, что этот закон следует из третьего закона Кеплера. Кроме того, Ньютон в эти годы доказал, что белый цвет есть смесь цветов, вывел формулу «бинома Ньютона» для произвольного рационального показателя (включая отрицательные), и др.

Все эти эпохальные открытия были опубликованы на 20-40 лет позже, чем были сделаны. Ньютон не гнался за славой. Стремление открыть истину было у него главной целью.

1667: эпидемия чумы отступает, и Ньютон возвращается в Кембридж. Избран членом Тринити-колледжа, а в 1668 году становится магистром.

Исаак Барроу. Статуя в Тринити-колледже.

В 1669 году Ньютон избирается профессором математики, преемником Барроу. Барроу пересылает в Лондон сочинение Ньютона «Анализ с помощью уравнений с бесконечным числом членов», содержавшее сжатое изложение некоторых наиболее важных его открытий в анализе. «Анализ» получил некоторую известность в Англии и за её пределами. Ньютон готовит полный вариант этой работы, но найти издателя так и не удаётся. Она была опубликована лишь в 1711 году.

Продолжаются эксперименты по оптике и теории цвета. Ньютон исследует сферическую и хроматическую аберрации. Чтобы свести их к минимуму, он строит смешанный телескоп-рефлектор (линза и вогнутое сферическое зеркало, которое полирует сам). Всерьёз увлекается алхимией, проводит массу химических опытов.

1672: демонстрация рефлектора в Лондоне вызывает всеобщие восторженные отзывы. Ньютон становится знаменит и избирается членом Королевского общества (британской Академии наук). Позже усовершенствованные рефлекторы такой конструкции стали основными инструментами астрономов, с их помощью были открыты иные галактики, красное смещение и др.

Разгорается полемика по поводу природы света с Гуком, Гюйгенсом и другими. Ньютон даёт зарок на будущее: не ввязываться в научные споры. В письмах он жалуется, что поставлен перед выбором: либо не публиковать свои открытия, либо тратить всё время и все силы на отражение недружелюбной дилетантской критики. Судя по всему, он выбрал первый вариант.

1680: Ньютон получает письмо Гука с формулировкой закона всемирного тяготения, послужившее, по признанию первого, поводом его работ по определению планетных движений (правда, потом отложенных на некоторое время), составивших предмет «Начал». Впоследствии Ньютон по каким-то причинам, быть может, подозревая Гука в незаконном заимствовании каких-то более ранних результатов самого Ньютона, не желает признавать здесь никаких заслуг Гука, но потом соглашается это сделать, хотя и довольно неохотно и не полностью [3].

1684—1686: после долгих уговоров Ньютон соглашается опубликовать свои главные достижения. Работа над «Математическими началами натуральной философии» (весь трёхтомник издан в 1687 году). Приходят всемирная слава и ожесточённая критика картезианцев: закон всемирного тяготения вводит дальнодействие, несовместимое с принципами Декарта.

В 1689 году Ньютон был в первый раз избран в парламент от Кембриджского университета и заседал там немногим более года. Второе избрание состоялось в 1701—1702 годах.

1696: Королевским указом Ньютон назначен смотрителем Монетного двора (с 1699 года — директор). Он энергично проводит денежную реформу, восстанавливая доверие к основательно запущенной его предшественниками монетной системе Великобритании.

1699: начало открытого приоритетного спора с Лейбницем, в который были вовлечены даже царствующие особы. Эта нелепая распря двух гениев дорого обошлась науке — английская математическая школа вскоре увяла на целый век, а европейская — проигнорировала многие выдающиеся идеи Ньютона, переоткрыв их много позднее. На континенте Ньютона обвиняли в краже результатов Гука, Лейбница и астронома Флемстида, а также в ереси. Конфликт не погасила даже смерть Лейбница (1716).

В 1703 году Ньютон был избран президентом Королевского общества и управлял им до конца жизни — более двадцати лет.

Могила Ньютона в Вестминстерском аббатстве

1705: королева Анна возводит Ньютона в рыцарское достоинство. Отныне он сэр Исаак Ньютон. Впервые в английской истории звание рыцаря присвоено за научные заслуги.

Последние годы жизни Ньютон посвятил написанию «Хронологии древних царств», которой занимался около 40 лет, и подготовкой третьего издания «Начал».

В 1725 году здоровье Ньютона начало заметно ухудшаться (каменная болезнь), и он переселился в Кенсингтон неподалёку от Лондона, где и скончался ночью, во сне, 20 (31) марта 1727 года. Похоронен в Вестминстерском аббатстве.

Оценки

Надпись на могиле Ньютона гласит:

Здесь покоится сэр Исаак Ньютон, дворянин, который почти божественным разумом первый доказал с факелом математики движение планет, пути комет и приливы океанов.Он исследовал различие световых лучей и появляющиеся при этом различные свойства цветов, чего ранее никто не подозревал. Прилежный, мудрый и верный истолкователь природы, древности и Св. писания, он утверждал своей философией величие Всемогущего Бога, а нравом выражал евангельскую простоту.Пусть смертные радуются, что существовало такое украшение рода человеческого.

Статуя Ньютона в Тринити-колледже

На статуе, воздвигнутой Ньютону в 1755 г. в Тринити-колледже, высечены стихи из Лукреция:

Qui genus humanum ingenio superavit (Разумом он превосходил род человеческий)

Сам Ньютон оценивал свои достижения более скромно:

Не знаю, как меня воспринимает мир, но сам себе я кажусь только мальчиком, играющим на морском берегу, который развлекается тем, что время от времени отыскивает камешек более пёстрый, чем другие, или красивую ракушку, в то время как великий океан истины расстилается передо мной неисследованным.

По словам А. Эйнштейна, «Ньютон был первым, кто попытался сформулировать элементарные законы, которые определяют временной ход широкого класса процессов в природе с высокой степенью полноты и точности» и «… оказал своими трудами глубокое и сильное влияние на всё мировоззрение в целом».

В честь Ньютона названы:

Научная деятельность

С работами Ньютона связана новая эпоха в физике и математике. В математике появляются мощные аналитические методы. В физике основным методом исследования природы становится построение адекватных математических моделей природных процессов и интенсивное исследование этих моделей с систематическим привлечением всей мощи нового математического аппарата. Последующие века доказали исключительную плодотворность такого подхода.

Математика

Первые математические открытия Ньютон сделал ещё в студенческие годы: классификация алгебраических кривых 3-го порядка (кривые 2-го порядка исследовал Ферма) и биномиальное разложение произвольной (не обязательно целой) степени, с которого начинается ньютоновская теория бесконечных рядов — нового и мощнейшего инструмента анализа. Разложение в ряд Ньютон считал основным и общим методом анализа функций, и в этом деле достиг вершин мастерства. Он использовал ряды для вычисления таблиц, решения уравнений (в том числе дифференциальных), исследования поведения функций. Ньютон сумел получить разложение для всех стандартных на тот момент функций.

Ньютон разработал дифференциальное и интегральное исчисление одновременно с Г. Лейбницем (немного раньше) и независимо от него.

До Ньютона действия с бесконечно малыми не были увязаны в единую теорию и носили характер разрозненных остроумных приёмов (см. Метод неделимых). Создание математического анализа сводит решение соответствующих задач, в значительной степени, до технического уровня. Появился комплекс понятий, операций и символов, ставший отправной базой дальнейшего развития математики. Следующий, XVIII век, стал веком бурного и чрезвычайно успешного развития аналитических методов.

По-видимому, Ньютон пришёл к идее анализа через разностные методы, которыми много и глубоко занимался. Правда, в своих «Началах» Ньютон почти не использовал бесконечно малых, придерживаясь античных (геометрических) приёмов доказательства, но в других трудах применял их свободно.

Отправной точкой для дифференциального и интегрального исчисления были работы Кавальери и особенно Ферма, который уже умел (для алгебраических кривых) проводить касательные, находить экстремумы, точки перегиба и кривизну кривой, вычислять площадь её сегмента. Из других предшественников сам Ньютон называл Валлиса, Барроу и шотландского учёного Джеймса Грегори. Понятия функции ещё не было, все кривые он трактовал кинематически как траектории движущейся точки.

Уже будучи студентом, Ньютон понял, что дифференцирование и интегрирование — взаимно обратные операции. Эта основная теорема анализа уже более или менее ясно вырисовывалась в работах Торричелли, Грегори и Барроу, однако лишь Ньютон понял, что на этой основе можно получить не только отдельные открытия, но мощное системное исчисление, подобное алгебре, с чёткими правилами и гигантскими возможностями.

Ньютон почти 30 лет не заботился о публикации своего варианта анализа, хотя в письмах (в частности, к Лейбницу) охотно делится многим из достигнутого. Тем временем вариант Лейбница широко и открыто распространяется по Европе с 1676 года. Лишь в 1693 году появляется первое изложение варианта Ньютона — в виде приложения к «Трактату по алгебре» Валлиса. Приходится признать, что терминология и символика Ньютона по сравнению с лейбницевской довольно неуклюжи: флюксия (производная), флюэнта (первообразная), момент величины (дифференциал) и т. п. Сохранились в математике только ньютоновское обозначение «o» для бесконечно малой dt (впрочем, эту букву в том же смысле использовал ранее Грегори), да ещё точка над буквой как символ производной по времени.

Достаточно полное изложение принципов анализа Ньютон опубликовал только в работе «О квадратуре кривых» (1704), приложении к его монографии «Оптика». Почти весь изложенный материал был готов ещё в 1670—1680-е годы, но лишь теперь Грегори и Галлей уговорили Ньютона издать работу, которая, с опозданием на 40 лет, стала первым печатным трудом Ньютона по анализу. Здесь у Ньютона появляются производные высших порядков, найдены значения интегралов разнообразных рациональных и иррациональных функций, приведены примеры решения дифференциальных уравнений 1-го порядка.

В 1707 году выходит книга «Универсальная арифметика». В ней приведены разнообразные численные методы. Ньютон всегда уделял большое внимание приближённому решению уравнений. Знаменитый метод Ньютона позволял находить корни уравнений с немыслимой ранее скоростью и точностью (опубликован в «Алгебре» Валлиса, 1685). Современный вид итерационному методу Ньютона придал Джозеф Рафсон (1690).

В 1711 году наконец напечатан, спустя 40 лет, «Анализ с помощью уравнений с бесконечным числом членов». В этом труде Ньютон с одинаковой лёгкостью исследует как алгебраические, так и «механические» кривые (циклоиду, квадратрису). Появляются частные производные, но почему-то нет правила дифференцирования дроби и сложной функции, хотя Ньютону они были известны; впрочем, Лейбниц на тот момент их уже опубликовал.

В этом же году выходит «Метод разностей», где Ньютон предложил интерполяционную формулу для проведении через (n + 1) данные точки с равноотстоящими или неравноотстоящими абсциссами многочлена n-го порядка. Это разностный аналог формулы Тейлора.

В 1736 году посмертно издаётся итоговый труд «Метод флюксий и бесконечных рядов», существенно продвинутый по сравнению с «Анализом с помощью уравнений». Приводятся многочисленные примеры отыскания экстремумов, касательных и нормалей, вычисления радиусов и центров кривизны в декартовых и полярных координатах, отыскания точек перегиба и т. п. В этом же сочинении произведены квадратуры и спрямления разнообразных кривых.

Надо отметить, что Ньютон не только достаточно полно разработал анализ, но и сделал попытку строго обосновать его принципы. Если Лейбниц склонялся к идее актуальных бесконечно малых, то Ньютон предложил (в «Началах») общую теорию предельных переходов, которую несколько витиевато назвал «метод первых и последних отношений». Используется именно современный термин «предел» (limes), хотя внятное описание сущности этого термина отсутствует, подразумевая интуитивное понимание.

Теория пределов изложена в 11 леммах книги I «Начал»; одна лемма есть также в книге II. Арифметика пределов отсутствует, нет доказательства единственности предела, не выявлена его связь с бесконечно малыми. Однако Ньютон справедливо указывает на бо́льшую строгость такого подхода по сравнению с «грубым» методом неделимых.

Тем не менее в книге II, введя моменты (дифференциалы), Ньютон вновь запутывает дело, фактически рассматривая их как актуальные бесконечно малые.

Примечательно, что теорией чисел Ньютон совершенно не интересовался. По всей видимости, физика ему была гораздо ближе математики.

Механика

Страница «Начал» Ньютона с аксиомами механики

Заслугой Ньютона является решение двух фундаментальных задач.

  • Создание для механики аксиоматической основы, которая фактически перевела эту науку в разряд строгих математических теорий.
  • Создание динамики, связывающей поведение тела с характеристиками внешних воздействий на него (сил).

Кроме того, Ньютон окончательно похоронил укоренившееся с античных времён представление, что законы движения земных и небесных тел совершенно различны. В его модели мира вся Вселенная подчинена единым законам.

Аксиоматика Ньютона состояла из трёх законов, которые сам он сформулировал в следующем виде.

  1. Всякое тело продолжает удерживаться в состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние.
  2. Изменение количества движения пропорционально приложенной силе и происходит по направлению той прямой, по которой эта сила действует.
  3. Действию всегда есть равное и противоположное противодействие, иначе, взаимодействия двух тел друг на друга между собой равны и направлены в противоположные стороны.

Первый закон (закон инерции), в менее чёткой форме, опубликовал ещё Галилей. Надо отметить, что Галилей допускал свободное движение не только по прямой, но и по окружности (видимо, из астрономических соображений). Галилей также сформулировал важнейший принцип относительности, который Ньютон не включил в свою аксиоматику, потому что для механических процессов этот принцип является прямым следствием уравнений динамики. Кроме того, Ньютон считал пространство и время абсолютными понятиями, едиными для всей Вселенной, и явно указал на это в своих «Началах».

Ньютон также дал строгие определения таких физических понятий, как количество движения (не вполне ясно использованное у Декарта) и сила. Он ввёл в физику понятие массы как меры инерции и, одновременно, гравитационных свойств (ранее физики пользовались понятием вес).

Завершили математизацию механики Эйлер и Лагранж.

Теория тяготения

Закон тяготения Ньютона

Сама идея всеобщей силы тяготения неоднократно высказывалась и до Ньютона. Ранее о ней размышляли Эпикур, Гассенди, Кеплер, Борелли, Декарт, Гюйгенс и другие. Кеплер полагал, что тяготение обратно пропорционально расстоянию до Солнца и распространяется только в плоскости эклиптики; Декарт считал его результатом вихрей в эфире. Были, впрочем, догадки с правильной формулой (Буллиальд, Рен, Гук), и даже кинематически обоснованные (с помощью соотнесения формулы центробежной силы Гюйгенса и третьего закона Кеплера для круговых орбит). [4]. Но до Ньютона никто не сумел ясно и математически доказательно связать закон тяготения (силу, обратно пропорциональную квадрату расстояния) и законы движения планет (законы Кеплера). Только с трудов Ньютона начинается наука динамика.

Важно отметить, что Ньютон опубликовал не просто предполагаемую формулу закона всемирного тяготения, но фактически предложил целостную математическую модель в контексте хорошо разработанного, полного, явно сформулированного и систематически изложенного подхода к механике:

В совокупности эта триада достаточна для полного исследования самых сложных движений небесных тел, тем самым создавая основы небесной механики. До Эйнштейна никаких принципиальных поправок к указанной модели не понадобилось, хотя математический аппарат оказалось необходимым значительно развить.

Ньютоновская теория тяготения вызвала многолетние дебаты и критику концепции дальнодействия.

Важным аргументом в пользу ньютоновской модели послужил строгий вывод на её основе эмпирических законов Кеплера. Следующим шагом стала теория движения комет и Луны, изложенная в «Началах». Позже с помощью ньютоновского тяготения были с высокой точностью объяснены все наблюдаемые движения небесных тел; в этом большая заслуга Эйлера, Клеро и Лапласа, которые разработали для этого теорию возмущений. Фундамент этой теории был заложен ещё Ньютоном, который провёл анализ движения Луны, используя свой обычный метод разложения в ряд; на этом пути он открыл причины известных тогда аномалий (неравенств) в движении Луны.

Первые наблюдаемые поправки к теории Ньютона в астрономии (объяснённые ОТО) были обнаружены лишь более чем через 200 лет (смещение перигелия Меркурия). Впрочем, и они очень малы в пределах Солнечной системы.

Ньютон также открыл причину приливов: притяжение Луны (даже Галилей считал приливы центробежным эффектом). Более того, обработав многолетние данные о высоте приливов, он с хорошей точностью вычислил массу Луны.

Ещё одним следствием тяготения оказалась прецессия земной оси. Ньютон выяснил, что из-за сплюснутости Земли у полюсов земная ось совершает под действием притяжения Луны и Солнца постоянное медленное смещение с периодом 26000 лет. Тем самым древняя проблема «предварения равноденствий» (впервые отмеченная Гиппархом) нашла научное объяснение.

Оптика и теория света

Ньютону принадлежат фундаментальные открытия в оптике. Он построил первый зеркальный телескоп (рефлектор), в котором, в отличие от чисто линзовых телескопов, отсутствовала хроматическая аберрация. Он также открыл дисперсию света, показал, что белый свет раскладывается на цвета радуги вследствие различного преломления лучей разных цветов при прохождении через призму, и заложил основы правильной теории цветов.

В этот период было множество спекулятивных теорий света и цветности; в основном боролись точка зрения Аристотеля («разные цвета есть смешение света и тьмы в разных пропорциях») и Декарта («разные цвета создаются при вращении световых частиц с разной скоростью»). Гук в своей «Микрографии» (1665) предлагал вариант аристотелевских взглядов. Многие полагали, что цвет есть атрибут не света, а освещённого предмета. Всеобщий разлад усугубил каскад открытий XVII века: дифракция (1665, Гримальди), интерференция (1665, Гук), двойное лучепреломление (1670, Эразм Бартолин (Rasmus Bartholin), изучено Гюйгенсом), оценка скорости света (1675, Рёмер). Теории света, совместимой со всеми этими фактами, не существовало.

Дисперсия света(опыт Ньютона)

В своём выступлении перед Королевским обществом Ньютон опроверг как Аристотеля, так и Декарта, и убедительно доказал, что белый свет не первичен, а состоит из цветных компонентов с разными углами преломления. Эти-то составляющие и первичны — никакими ухищрениями Ньютон не смог изменить их цвет. Тем самым субъективное ощущение цвета получало прочную объективную базу — показатель преломления.

Ньютон создал математическую теорию открытых Гуком интерференционных колец, которые с тех пор получили название «кольца Ньютона».

Титульный лист «Оптики» Ньютона

В 1689 г. Ньютон прекратил исследования в области оптики — по распространённой легенде, поклялся ничего не печатать в этой области при жизни Гука, который постоянно донимал Ньютона болезненно воспринимаемой последним критикой. Во всяком случае, в 1704 году, на следующий год после смерти Гука, выходит в свет монография «Оптика». При жизни автора «Оптика», как и «Начала», выдержала три издания и множество переводов.

Книга первая монографии содержала принципы геометрической оптики, учение о дисперсии света и составе белого цвета с различными приложениями.

Книга вторая: интерференция света в тонких пластинках.

Книга третья: дифракция и поляризация света. Поляризацию при двойном лучепреломлении Ньютон объяснил ближе к истине, чем Гюйгенс (сторонник волновой природы света), хотя объяснение самого явления неудачное, в духе эмиссионной теории света.

Ньютона часто считают сторонником корпускулярной теории света; на самом деле он, по своему обыкновению, «гипотез не измышлял»[5] и охотно допускал, что свет может быть связан и с волнами в эфире. В своей монографии Ньютон детально описывал математическую модель световых явлений, оставляя в стороне вопрос о физическом носителе света.

Другие работы по физике

Ньютону принадлежит первый вывод скорости звука в газе, основанный на законе Бойля-Мариотта.

Он предсказал сплюснутость Земли у полюсов, примерно 1:230. При этом Ньютон использовал для описания Земли модель однородной жидкости, применил закон всемирного тяготения и учёл центробежную силу. Одновременно аналогичные расчёты выполнил Гюйгенс, который не верил в дальнодействующую силу тяготения[6] и подошёл к проблеме чисто кинематически. Соответственно Гюйгенс предсказал более чем вдвое меньшее сжатие, чем Ньютон, 1:576. Более того, Кассини и другие картезианцы доказывали, что Земля не сжата, а выпукла у полюсов наподобие лимона. Впоследствии, хотя и не сразу (первые измерения были неточны), прямые измерения (Клеро, 1743) подтвердили правоту Ньютона; реальное сжатие равно 1:298. Причина отличия этого значения от предложенного Ньютоном в сторону Гюйгенсовского состоит в том, что модель однородной жидкости всё же не вполне точна (плотность заметно возрастает с глубиной). Более точная теория, явно учитывающая зависимость плотности от глубины, была разработана только в XIX веке.

Другие сферы деятельности

Уточнённая хронология древних царств

Параллельно с изысканиями, закладывавшими фундамент нынешней научной (физической и математической) традиции, Ньютон много времени отдавал алхимии, а также богословию. Никаких трудов по алхимии он не издавал, и единственным известным результатом этого многолетнего увлечения стало серьёзное отравление Ньютона в 1691 году.

Парадоксально, что Ньютон, много лет трудившийся в Колледже святой Троицы, сам, видимо, в Троицу не верил. Исследователи его богословских работ, такие как Л. Мор, считают, что религиозные взгляды Ньютона были близки к арианству[7]. См. статью Ньютона «Историческое прослеживание двух заметных искажений Священного Писания».

Ньютон предложил свой вариант библейской хронологии, оставив после себя значительное количество рукописей по данным вопросам. Кроме того, он написал комментарий на Апокалипсис. Теологические рукописи Ньютона ныне хранятся в Иерусалиме, в Национальной Библиотеке.

Примечания

  1. ↑ Исторически ударение в фамилии Ньютона чаще делалось на втором слоге, хотя ударение на первом ближе к английскому оригиналу. Современные словари и руководства не имеют единого мнения по этому поводу. Словарь Русское словесное ударение М. В. Зарва (2001) требует ударения на первом слоге, Справочник по правописанию, произношению, литературному редактированию Розенталя (1998) допускает вариативное ударение, но уточняет: «традиционно — Ньюто́н». Орфографический словарь В. В. Лопатина тоже допускает вариативность.
  2. ↑ «В бумагах, написанных более 15 лет тому назад (точно привести дату я не могу, но во всяком случае это было перед началом моей переписки с Ольденбургом), я выразил обратную квадратичную пропорциональность тяготения планет к Солнцу в зависимости от расстояния и вычислил правильное отношение земной тяжести и conatus recedendi (стремление) Луны к центру Земли, хотя и не совсем точно» (Из письме к Галлею, 1686 год).С. И. Вавилов. Исаак Ньютон. 2-е дополненное издание. М.-Л.: Изд. АН СССР, 1945 г., глава 9.
  3. ↑ "Если связать в одно все предположения и мысли Гука о движении планет и тяготении, высказанные им в течение почти 20 лет, то мы встретим почти все главные выводы «Начал» Ньютона, только высказанные в неуверенной и мало доказательной форме. Не решая задачи, Гук нашел ее ответ. Вместе с тем перед нами вовсе не случайно брошенная мысль, но несомненно плод долголетней работы. У Гука была гениальная догадка физика-экспериментатора, прозревающего в лабиринте фактов истинные соотношения и законы «природы. С подобной редкостной интуицией экспериментатора мы встречаемся в истории науки еще у Фарадея, но Гук и Фарадей не были математиками. Их дело было довершено Ньютоном и Максвеллом. Бесцельная борьба с Ньютоном за приоритет набросила тень на славное имя Гука, но истории пора, спустя почти три века, отдать должное каждому. Гук не мог идти прямой, безукоризненной дорогой „Математических начал“ Ньютона, но своими окольными тропинками, следов которых нам теперь уже не найти, он пришел туда же.»(С. И. Вавилов. Исаак Ньютон. 2-е дополненное издание. М.-Л.: Изд. АН СССР, 1945 г., глава 9).Возможно, это суждение Вавилова недостаточно справедливо к Гуку, так как упомянутое письмо Гука Ньютону содержит не только «догадку», но и вполне обоснованный вывод закона тяготения из третьего закона Кеплера, произведенный для случая круговых орбит.
  4. ↑ Вот, например, отрывок из письма Гука 6 января 1680 года Ньютону: «Я предполагаю, что притяжение обратно пропорционально квадрату расстояния до центра, соответственно предположению Кеплера о зависимости скорости от расстояния.» (цитируется по В. И. Арнольд, «Гюйгенс и Барроу, Ньютон и Гук», Указ. соч., с. 16)
  5. ↑ «Гипотез не измышляю»
  6. ↑ См. предисловие к книге: Тодхантер И. История математических теорий притяжения и фигуры Земли от Ньютона до Лапласа. М.: 2002.
  7. ↑ С. И. Вавилов. Исаак Ньютон. 2-е дополненное издание. М.-Л.: Изд. АН СССР, 1945 г., глава 15.

Основные опубликованные сочинения Ньютона

  • Method of Fluxions (1671, «Метод флюксий», опубликован посмертно, в 1736 году)
  • De Motu Corporum in Gyrum (1684)
  • Philosophiae Naturalis Principia Mathematica (1687, «Математические начала натуральной философии»)
  • Opticks (1704, «Оптика»)
  • Arithmetica Universalis (1707, «Универсальная арифметика»)
  • Short Chronicle, The System of the World, Optical Lectures, The Chronology of Ancient Kingdoms, Amended и De mundi systemate опубликованы посмертно в 1728 году.
  • An Historical Account of Two Notable Corruptions of Scripture (1754)

Литература

Сочинения

  • Ньютон И. Математические работы. Пер. и комм. Д. Д. Мордухай-Болтовского. М.-Л.: ОНТИ, 1937.
  • Ньютон И. Всеобщая арифметика или Книга об арифметическом синтезе и анализе. М.: Изд. АН СССР, 1948.
  • Ньютон И. Математические начала натуральной философии. Пер. и прим. А. Н. Крылова. М.: Наука, 1989.
  • Ньютон И. Лекции по оптике. М.: Изд. АН СССР, 1946.
  • Ньютон И. Оптика или трактат об отражениях, преломлениях, изгибаниях и цветах света. М.: Гостехиздат, 1954.
  • Ньютон И. Замечания на книгу пророка Даниила и Апокалипсис св. Иоанна. Пг.: Новое время, 1915.
  • Ньютон И. Исправленная хронология древних царств. М.: РИМИС, 2007.

О нём

  • Арнольд В. И. Гюйгенс и Барроу, Ньютон и Гук.. М.: Наука, 1989.
  • Белл Э. Т. Творцы математики. М.: Просвещение, 1979.
  • Вавилов С. И. Исаак Ньютон. 2-е доп. изд. М.-Л.: Изд. АН СССР, 1945.
  • История математики под редакцией А. П. Юшкевича в трёх томах, М.: Наука, 1970. Том 2. Математика XVII столетия.
  • Карцев В. Ньютон. М.: Молодая гвардия, 1987.
  • Катасонов В. Н. Метафизическая математика XVII в. М.: Наука, 1993.
  • Кирсанов В. С. Научная революция XVII века. М.: Наука, 1987.
  • Кузнецов Б. Г. Ньютон. М.: Мысль, 1982.
  • Московский университет — памяти Исаака Ньютона. М., 1946.
  • Спасский Б. И. История физики. Изд. 2-е. М.: Высшая школа, 1977. Часть 1. Часть 2.
  • Хеллман Х. Великие противостояния в науке. Десять самых захватывающих диспутов. M.: Диалектика, 2007. — Глава 3. Ньютон против Лейбница: Битва титанов.
  • Юшкевич А. П. О математических рукописях Ньютона. Историко-математические исследования, 22, 1977, с. 127—192.
  • Юшкевич А. П. Концепции исчисления бесконечно малых Ньютона и Лейбница. Историко-математические исследования, 23, 1978, с. 11-31.
  • Arthur R. T. W. Newton’s fluxions and equably flowing time. Studies in history and philosophy of science, 26, 1995, p. 323—351.
  • Bertoloni M. D. Equivalence and priority: Newton versus Leibniz. Oxford: Clarendon Press, 1993.
  • Cohen I. B. Newton’s principles of philosophy: inquires into Newton’s scientific work and its general environment. Cambridge (Mass) UP, 1956.
  • Cohen I. B. Introduction to Newton’s «Principia». Cambridge (Mass) UP, 1971.
  • Lai T. Did Newton renounce infinitesimals? Historia Mathematica, 2, 1975, p. 127—136.
  • Selles M. A. Infinitesimals in the foundations of Newton’s mechanics. Historia Mathematica, 33, 2006, p. 210—223.
  • Weinstock R. Newton’s Principia and inverse-square orbits: the flaw reexamined. Historia Mathematica, 19, 1992, p. 60-70.
  • Westfall R. S. Never at rest: A biog. of Isaac Newton. Cambridge UP, 1981.
  • Whiteside D. T. Patterns of mathematical thought in the later seventeenth century. Archive for History of Exact Sciences, 1, 1963, p. 179—388.
  • White M. Isaac Newton: The last sorcerer. Perseus, 1999, 928 с.

Художественные произведения

Ссылки

См. также

Wikimedia Foundation. 2010.

dic.academic.ru

Исаак Ньютон | Религия, наука, жизнь

Есть в истории науки имена и творения, кото­рые не только составили эпоху в развитии знаний и техники, но и сохранили на века свое непреходя­щее значение. К ним по праву принадлежит имя Исаака Ньютона — величайшего английского физи­ка, математика, астронома. Гений Ньютона раскрыл мно­гие тайны природы, осветил человечеству новые горизонты мироздания.

В бессмертном труде «Математические начала натуральной философии», увидевшем свет в 1687 году, Ньютон сформулировал три закона движения, составивших основу классической механики и физи­ки, изложил свою теорию всемирного тяготения, связавшую в единую семью бег небесных светил — Солнца, планет, комет. Ньютон создал новую, меха­ническую систему мира. В этом его великий науч­ный подвиг.

Огромен его вклад и в оптику, математику: он выдвинул гипотезу о свете как потоке особых час­тиц, открыл в разнообразной гамме цветов простые, монохроматические лучи, создал, наряду с Лейбни­цем, метод дифференциального и интегрального ис­числения.

Открытия Ньютона выдержали самую суровую проверку. Проверку временем, практикой. Прогресс естествознания, его революционные преобразования создали новые, более общие и совершенные концеп­ции, включившие в себя законы Ньютона, которые являются такой же первоосновой практической деятельности людей, как геометрия Евклида и гид­ростатика Архимеда.

Открытия Ньютона имели огромное значение. Он продол­жил и завершил дело, начатое Коперником и Гали­леем. Недаром на вопрос о том, как ему удалось сделать столь значительные открытия, Ньютон от­ветил: «Я стоял на плечах гигантов».

На протяжении сто­летий христианская церковь противопоставляла небеса бренной земле, учила, что небо подчинено лишь божественной воле, а в движении планет уча­ствуют ангелы, которые их подталкивают. В начер­танной гением Ньютона картине мира движение небесных светил подчинилось естественным зако­нам, имеющим точное математическое выражение и не требующим какого-либо вмешательства божест­венных сил. Эти законы человек мог не только знать, но и с успехом использовать в своей деятель­ности.

Главным критиком Ньютона был епис­коп Джордж Беркли. Он возмущался тем, что у Ньютона движение, пространство и время существу­ют независимо от Бога, а материя, обладая свойст­вами отталкивания и притяжения, выступает как ак­тивная сила. Не миновал Ньютон критики и со стороны философов-идеалистов.

Нападки на Ньютона не были случай­ностью. По существу своих философских взглядов он стоял на позициях стихийного материализма, признавал объективное существование материи и ее форм, объективность закономерностей природы, возможность их познания людьми. Идеи Ньютона о притяжении и отталкивании как внутренне прису­щих материи важнейших свойствах оказали боль­шое влияние на развитие материалистической мыс­ли, особенно на формирование идеи самодвижения материи.

Но материалистические воззрения Ньютона бы­ли механистическими. Он жил в эпоху расцвета механики, когда все явления в мире пытались объяс­нить с помощью механических законов, действий извне. И Ньютон, открывший законы небесной ме­ханики, движения и взаимодействия планет Солнеч­ной системы, уподобил эту систему огромному механизму.

Однако на основе только законов механики нель­зя было дать ответа на многие вопросы мироздания. Ответить, например, на такой вопрос: кто же и ког­да завел, пустил этот огромный механизм Солнеч­ной системы? И вот в роли часовщика, давшего ход небесному механизму, у Ньютона выступает Бог.

Ограниченность взглядов великого английского мыслителя отражала представления, господствовав­шие в его время среди естествоиспытателей: мир не­изменен, планеты вечно движутся в раз и навсегда установленном порядке. А причиной, которая поло­жила начало этому движению, считали божествен­ный первотолчок. В то время в естествознании еще не сформировалась идея, что мир не имел «начала», что все в нем пребывает в непрестанном развитии, изменении. Лишь к концу XVIII — началу XIX ве­ка, когда наука накопила необходимый материал, появились первые гипотезы, стремившиеся объяс­нить происхождение нашей Солнечной системы ес­тественным развитием материи и исключавшие ка­кое-либо божественное вмешательство в этот про­цесс.

Крупнейший французский математик и астроном Пьер Лаплас, живший во второй половине XVIII — начале XIX столетия, пришел к заключению, что движение планет и их спутников может быть объяс­нено без всякого божественного первотолчка. Лап­лас создал такую научную гипотезу. Первичное Солнце имело быстро вращающуюся атмосферу, ко­торая простиралась за пределы нынешней планет­ной системы. В результате вращения от атмосферы отделились кольца, превратившиеся в отдельные сгустки. Сгустки приняли определенную форму и превратились в планеты.

В процессе развития естествознания, углубле­ния знаний о Вселенной создавались новые гипоте­зы о возникновении Солнечной системы. Но как бы они ни отличались друг от друга, все они исходили из идей о естественном развитии природы и исклю­чали какое бы то ни было божественное вмеша­тельство в ее законы.

Однажды выдающийся французский математик Лагранж сказал о Ньютоне: «Он самый счастливый: систему мира можно установить лишь один раз!» Развитие науки показало, что дело обстоит не сов­сем так. Хотя создаваемая естествознанием карти­на мира имеет огромное мировоззренческое значе­ние, она не создаётся раз и навсегда. Картина мира дает обобщенное представление о Вселенной, синте­зирующее значение данного этапа развития науки. Элементами картины мира являются представления о видах материи и движения, способе их связи, харак­теристики пространства, времени, универсальных за­конов, действующих во Вселенной. Все эти пред­ставления связываются воедино общими теоретико­методологическими принципами.

Накопление естествознанием новых фундамен­тальных данных ведет к появлению новой картины мира, которая включает в себя положительные за­воевания прежней. История естествознания знает три картины мира: механическую, электродинами­ческую и квантово-релятивистскую. Первая, как мы уже видели, связана с именем Ньютона. Ей присуще представление о материи в виде частиц, перемещаю­щихся в пустоте, об оторванности пространства и времени от материи и друг от друга.

Электродинамическая картина мира оформилась во второй половине XIX века и связана в значитель­ной мере с открытием Максвеллом законов электро­динамики. Электродинамическая картина мира была обогащена представлением об электромагнитном по­ле как форме существования материи, о перемеще­ниях заряженных частиц в поле, о распространении электромагнитных волн и т. п.

Квантово-релятивистская картина мира начала складываться в первой четверти XX века. В ее осно­ву легли теория относительности, квантовая механи­ка, ядерная физика и другие науки, возникшие в ходе начавшейся в физике революции. Новая карти­на мира обогатилась представлениями о многообра­зии видов материи, имеющих одновременно и кор­пускулярные свойства, и свойства поля, о связи про­странства и времени с материальными процессами и т. д.

Большую роль в формировании этой картины мира сыграла созданная великим преобразователем естествознания Альбертом Эйнштейном теория отно­сительности.

Созданная естествознанием новая картина мира преодолела непоследовательность картины мира Ньютона. Ведь его учение об абсолютно пустом про­странстве, в котором по законам механики движутся материальные тела, вело к представлению о Боге как первоисточнике движения.

В обществе Нью­тон занимал весьма высокое социальное положение. Он был назначен в 1696 году хранителем, а в 1699 го­ду директором королевского монетного двора. С 1703 года Ньютон — президент Королевского обще­ства (британской Академии наук). Королева Анна даровала всемирно признанному ученому дворянство, и он стал именоваться «сэром» Исааком.

Ученый вырос в семье с очень сильными религиозными традициями. Его отчим и дядя, имевшие боль­шое влияние на него в детстве, были священниками. Священником был и учитель Ньютона Исаак Бар­роу, профессор колледжа Троицы, где обучался в 1661 —1669 годах будущий первооткрыватель зако­на всемирного тяготения. Многие ученики и друзья Ньютона, кроме науки, занимались богословием.

Среди богословских изысканий великого мысли­теля наиболее известно сочинение «Замечания на книгу пророка Даниила и Апокалипсис св. Иоанна», изданное через шесть лет после смерти автора.

Его математический метод врывался в библейские повествования. Ньютон пытался перетолковать символический язык про­роков, суть которого состояла, по его мнению, в упо­доблении мира внешней природы миру отношений государств и властей. Так, он считал, что «гром» в высказываниях пророков обозначает голос толпы, «бури и движения облаков» — войну, «небо» — престолы и власти, «земля» — подвластный народ и т. п. Такой подход к Библии был не по вкусу Церкви.

Оценку богословским изысканиям Ньютона дал выдающийся французский философ Поль Гольбах. «….Великий Ньютон, — писал он, — становится просто ребенком, когда, покинув фи­зику и очевидные факты, углубляется в фантасти­ческий мир теологии».

Некоторые пытаются истолковать великое научное наследие Ньютона в религиозном духе, доказать на его примере гармонию науки и религии, но научные взгляды и рели­гиозные представления у Ньютона не образовывали подлинного согласия, единства. И не религиозные взгляды составили его славу и величие. Сейчас любой двоечник знает имя Ньютона и открытые его ге­нием законы природы. А его истолкование библей­ских пророчеств не представляет особого ин­тереса.

Величие и бессмертие Исаака Ньютона состоит в том гигантском шаге, который сделало человечест­во с помощью его научного творчества на пути по­бедного шествия разума, на пути познания мира.

Статья из журнала «Наука и религия»

fideviva.ru

Биография Исаака Ньютона - биография Ньютона

Дата рождения: 4 января 1643 годаДата смерти: 31 марта 1727 годаМесто рождения: деревня Вулсторп, графство Линкольншир, Великобритания

Исаак Ньютон – известен как физик и математик, а также Исаак Ньютон гениальный механик. Он оставил свой след в истории в качестве создателя основ физики.

Родился знаменитый ученый в 1643 году. Его отец был зажиточным фермером, но увидеть рождение сына не успел. Мать Исаака после смерит мужа, вышла замуж второй раз и воспитанием сына не занималась.

Ньютон был очень болезненным мальчиком, и его родственники думали, что он умрет, однако все обернулось иначе. Его воспитанием занимался брат его матери.

Уже в школе у Ньютона обнаружилось множество талантов, которые отмечались учителями. Его родственники пытались вырастить из него скваттера, но их попытки не увенчались успехом. Мать разрешила Исааку окончить школу под давлением учителей, и он продолжил свое образование в колледже в Кембридже.

Еще, будучи студентом, Ньютон пытался объяснить все явления, происходящие в окружающей среде с научного плана. Его увлекает математика, и в 21 год Исаак уже делает открытие – он выводит бином, названный его именем.

За это открытие юноша получает степень бакалавра. В Великобритании в 1665 г. свирепствовала чума. Карантин в стране продолжался два года, и ученый вынужден был уехать домой.

В Кембридж будущий ученый смог вернутся только после того как стихла эпидемия. После окончания колледжа, Исаак полностью посвятил себя научной деятельности. Именно в этот период Ньютон открыл закон всемирного тяготения.

Ньютон занимается исследованием оптики и разрабатывает телескоп, который позволял морякам рассчитывать точное время по расположению звезд. Эта разработка позволила изобретателю стать почетным членом Королевского общества. Ученый ведет переписку с Лейбницем.

В 1677 году, в жилище Исаака произошел пожар, который уничтожил некоторую часть трудов этого ученого. Все свои изыскания Ньютон обобщил в книге, где изложил понятия механики. В это же книге он ввел новые величины в физике, и также сформулировал законы механики и многое другое. Участвовал ученый и в общественной жизни королевства.

Он был избран в палату лордов, был назначен смотрителем монетного двора и через некоторое время его управляющим. В 1703 году его избирают президентом Королевского общества. Ньютону присуждают титул рыцаря.

Всю жизнь Ньютон активно боролся с финансовыми аферами и фальшивомонетчиками, в конце своей жизни, он становится участником денежной махинации и теряет часть своего состояния.

У Исаака Ньютона не осталось потомков. Все свое время работал. Но кроме этого Ньютон обладал непривлекательной внешностью, которая отталкивала от него женщин. Биографы ученого отмечают, что в юности Исаак увлекся своей сверстницей мисс Сторей, с которой дружил всю свою жизнь. Умер великий ученый в 1727 году. Похоронен в Вестминстерском аббатстве.

Достижения Исаака Ньютона:

• Считается основателем механики (раздел физики)• Открыл кольца, названные его именем• Основал интегральные счисления в математике• Автор бинома Ньютона• Построил рефлекторный телескоп.

Важные даты биографии Исаака Ньютона:

• 1664 г. – Открыл Бином Ньютона• 1665–1667 гг. – Открыл закон всемирного тяготения• 1689 г. — Был избран парламентарием• 1705 г. – Получил звание рыцаря

Интересные факты из жизни Исаака Ньютона:

• Ньютону удалось разложить радугу на семицветный спектр. Первоначального из этого спектра был упущен оранжевый цвет и синий. Однако затем Ньютон сравнял количество цветов в радуге с числом нот в одной музыкальной гамме.• Пытаясь доказать, что люди видят окружающие предметы в процессе давления света на сетчатку глаза, ученый, надавил на дно собственного глазного яблока, так, что чуть не лишился его. Таким образом он смог доказать свою теорию. Глаз остался целым.• Ньютон никогда не пропускал заседания парламента• Исаак был рассеянным человеком, и однажды вместо того, чтобы опустить в кипяток яйцо, бросил туда часы и заметил это только через две минуты.• Ньютон предсказывал пришествие Христа в 2060 году.

the-biografii.ru