Как найти ребро куба, если есть объем. Как найти объем зная ребро куба


Объем куба | Онлайн калькуляторы, расчеты и формулы на GELEOT.RU

Куб представляет собой прямоугольный параллелепипед, у которого все ребра равны между собой. Поэтому объем куба вычисляется не просто произведением всех трех его параметров, а возведением ребра куба в третью степень. Поэтому чтобы вычислить ребро куба через объем необходимо извлечь из последнего кубический корень. a=∛V

Площадь грани куба или одной его стороны равна площади квадрата, стороной которого является ребро куба, поэтому кубический корень из объема необходимо возвести во вторую степень. S=∛(V^2 )

Площадь боковой и полной поверхности куба состоят из четырех и шести таких граней соответственно, поэтому их формулы являются аналогией предыдущей с добавлением необходимых коэффициентов. S_(б.п.)=4∛(V^2 ) S_(п.п.)=6∛(V^2 )

Периметр куба равен сумме двенадцати его ребер, равных между собой, поэтому зная, что каждое ребро представлено в виде кубического корня из объема, необходимо умножить его на двенадцать. P=12a=12∛V

Чтобы вычислить диагональ грани куба, нужно вернуться к формуле диагонали квадрата, которым представлены грани. Согласно ей, чтобы найти диагональ, нужно умножить корень из двух на сторону квадрата – ребро куба в данном случае, или кубический корень из объема. d=a√2=∛V √2

Найти диагональ самого куба немного сложнее. Для этого три вершины – диагонали и прилегающего к ней бокового ребра – соединяются в прямоугольный треугольник через диагональ основания, и по теореме Пифагора выводится формула диагонали куба. (рис.2.1) a^2+d^2=D^2 D^2=a^2+2a^2 D^2=3a^2 D=a√3=∛V √3

Чтобы найти радиус сферы, вписанной в куб, через объем, нужно разделить его кубический корень, представляющий собой ребро куба, на два. (рис. 2.2) r=a/2=∛V/2

Радиус сферы, описанной вокруг куба, равен половине диагонали куба, поэтому подставив вместо диагонали необходимую формулу через объем, получим следующее выражение: (рис.2.3) R=D/2=(∛V √3)/2

geleot.ru

Как найти объем куба разными способами

Если представить себе обычные детские кубики, то легко можно понять, как найти объем куба. Приняв объём одного кубика за кубическую меру объёма, например, за кубический дециметр, начинаем строить из них большой куб. Сложив первый квадратный «этаж», например, размерами 4Х4, следует выложить ещё 4 «этажа», чтобы все рёбра нашего куба были равны. Равенство всех сторон куба – это основное правило, которое доказывает, что перед нами именно куб.

Найти размер одной квадратной грани легко, стоит лишь перемножить ширину и длину основания, то есть возвести ребро в квадрат. Так как у нас получается несколько рядов – «этажей», вернее, их получается по счёту равное количество ребру куба, то полученный квадрат ещё раз умножаем на высоту куба, то есть, на его ребро. Получается, таким образом, что ребро мы возводим в третью степень, по-другому - в куб. Вот так просто, оказывается, найти объём куба!

Именно отсюда и берёт своё название возведение в третью степень – «в куб». То есть, для «возведения в куб» нужно три раза умножить число на само себя – само выражение уже имеет в своей основе решение задачи нахождения кубического объёма.

Но если величина кубического ребра, то есть одной стороны куба, неизвестна, но дана диагональ одной из его граней, как найти объем куба? Можно ли это сделать? Оказывается, и это вполне вычислимо.

По диагонали стороны следует вычислить сторону одной грани и ввести её величину в куб, то есть в третью степень. Для того чтобы было понятнее, начертим одну из кубических граней – это будет квадрат, например, PMNK, где MN – диагональ, которая нам известна. Используя теорему Пифагора, возведём известное значение диагонали в квадрат или во вторую степень. В прямоугольном треугольнике PMN сторона MN является гипотенузой, и её квадрат равняется сумме катетов, возведённых в квадрат.

Но мы знаем, что катеты – это стороны квадратной грани куба. Значит, полученный результат следует разделить на два и найти квадратный корень. Этот результат и будет равняться величине стороны – ребра куба. Теперь уже вопрос, как вычислить объем куба, решается самым простым способом. Всего-то навсего возводим сторону куба в третью степень – и результат налицо.

Часто бывает так, что в условии задачи есть такая величина, как площадь одной из граней куба. В таком случае сначала нужно найти сторону квадрата – грани куба. Для этого достаточно найти квадратный корень заданной площади. Затем вычисленную величину грани умножают на известную площадь.

Иногда просто необходимо знать, как найти объем куба, но нет ни одного размера, ни ребра, ни площади стороны куба. Однако если эта задача имеет в условии такие данные, как плотность и масса, то вычислить отчет можно, перемножив данные величины: плотность и массу. Искомый объём будет получен в произведении.

А если у человека вообще нет ни одного измерения, как поступить в этом случае? В практике часто пользуются таким несложным приёмом, как погружение тела в жидкость. Так как найти объем куба без сантиметровой ленты или линейки?

Нужно отмерить определённое количество жидкости в ёмкости, например, в кастрюле, налив её до краёв. Затем следует поставить ёмкость в другую посуду. Погрузив куб в жидкость, нужно постараться собрать всю перелившуюся через край жидкость. Затем, измерив её мензуркой или банками (это зависит от величины объёма куба), можно делать вывод об объёме куба – он будет равен количеству жидкости, которую куб вытеснил своим погружением.

К сожалению, довольно сложно или даже невозможно измерить этим способом объёмы кубов значительных размеров. Зато так можно узнать объём не только куба, но предметов любой формы.

Существуют ещё и другие возможности нахождения объёма кубов. Например, при известной длине диагонали куба (не грани!). Известно, что формула диагонали куба выражается произведением его ребра на квадратный корень из 3. Следовательно, делим диагональ на квадратный корень из 3 и получаем длину ребра. Дальше всё очень просто: возводим результат в куб и получаем искомый ответ.

fb.ru

Как найти ребро куба?

Куб – это один из самых простых трехмерных объектов, как в стереометрии, так и в природе. Перед тем, как найти ребро куба, необходимо напомнить о том, что такое куб. Это прямоугольный параллелепипед, имеющий равные между собой ребра. Кроме того, куб представляет собой шестигранник, гранями которого являются равные квадраты. Чтобы найти ребро куба, необходимо знать его некоторые параметры – объем куба, площадь грани, длину диагонали куба или грани.

  1. В большинстве случаев встречаются задачи четырех типов, в которых находится ребро куба. Это – определить длину ребра по диагонали куба, по диагонали его грани, по объему куба и площади грани. Самая простая из них – найти ребро по площади грани. Ведь грань куба – это квадрат со стороной, которая равна ребру куба. Следовательно, площадь этой грани равна ребру куба, возведенному в квадрат. Отсюда, чтобы найти ребро, необходимо из площади грани извлечь квадратный корень. а=vS а – ребро куба (длина), S – площадь одной грани.
  2. Еще проще найти грань куба исходя из его объема, так как объем куба будет равняться возведению длины ребра в 3-ю степень. Следовательно, если мы извлечем кубический корень (третью степень) из объема, то получим длину ребра а=vV (кубический корень), здесь а – ребро куба (длина), V – его объем.
  3. Как найти длину ребра куба, если известны длины диагоналей. Обозначим: а – ребро куба (длина), b – диагональ грани куба (длина), c – диагональ куба (длина). Диагональ ребра и грани куба образуют между собой равносторонний прямоугольный треугольник. Применяем теорему Пифагора, где: a^2+a^2=b^2, здесь (a^ - возведение в степень) Получается: a=v(b^2/2). Извлекая корень квадратный из половины квадрата диагонали его грани, мы найдем длину ребра куба.
  4. Находим длину ребра по диагонали куба, где а - ребро куба, b - диагональ грани, с - диагональ куба. Они образуют все вместе прямоугольный треугольник. Исходим из теоремы Пифагора где: a^2+b^2=c^2. Применим вышеназванную зависимость между значениями а и b, подставим их в выражение b^2=a^2+a^2. Получив: a^2+a^2+a^2=c^2, найдем: 3*a^2=c^2, получая конечное выражение; a=v(c^2/3).

Если параметры куба задаются в устаревших, национальных и других специфических единицах, тогда следует перевести их в подходящие метрические аналоги – кубические метры, дециметры, сантиметры или миллиметры.

elhow.ru

Как найти ребро куба, если есть объем

Куб - это, пожалуй, самый простой трехмерный объект, как в природе, так и в стереометрии. Кубом называется прямоугольный параллелепипед, все ребра которого равны между собой. Также куб можно представить как шестигранник, все грани которого представляют собой равные квадраты. Благодаря высокой степени симметрии, достаточно знать лишь длину ребра куба, чтобы вычислить все остальные характеристики. А для того чтобы найти ребро куба, достаточно его объема.

Вам понадобится

калькулятор.

Спонсор размещения P&G Статьи по теме "Как найти ребро куба, если есть объем" Как найти сечение параллелепипеда Как найти сторону куба Как найти площадь грани куба

Инструкция

1

Чтобы найти ребро куба, если есть объем, извлеките корень кубический из числового значения его объема. То есть найдите такое число, куб (третья степень) которого будет равняться объему куба.

2

Для вычисления кубического корня воспользуйтесь калькулятором. Лучше если это будет не «бухгалтерский» калькулятор, а калькулятор, предназначенный для инженерных расчетов. Однако даже на «инженерном» калькуляторе вы вряд ли найдете отдельную кнопку для извлечения кубического корня. Поэтому используйте функцию возведения в степень. Извлечению корня кубического соответствует возведение в степень «одна третья» (1/3).

3

Чтобы возвести число в степень 1/3, наберите само число. Затем нажмите на кнопку «возведение в степень». В зависимости от конструкции калькулятора, она может выглядеть как x^y, или xy (у – в виде маленького значка, расположенного чуть выше). Так как большинство калькуляторов не позволяет вводить дроби, вместо 1/3 наберите 0,33. Если желаете получить большую точность вычислений, увеличьте количество троек.

4

Если объем куба выражен в метрических системах единиц измерения, длина ребра куба будет измеряться в соответствующей линейной единице. Так, например, если объем куба равен 8000 метров кубических (м?), то длина его ребра будет равна 20 метров (м).

Если объем куба выражен в производных от нестандартных линейных единиц измерения, то длина ребра получится в соответствующих линейных единицах. Так если объем куба задан в кубических дюймах, длина ребра получится в дюймах (линейных).

Если объем куба задан в национальных, устаревших, бытовых и прочих специфических единицах измерения объема, предварительно переведите этот объем в наиболее подходящий метрический аналог – кубические миллиметры, дециметры или метры.

Как просто

masterotvetov.com

Как найти ребро куба | Сделай все сам

Зная некоторые параметры куба, дозволено легко обнаружить его ребро. Для этого довольно лишь иметь информацию о его объеме, площади грани либо длине диагонали грани либо куба.

Вам понадобится

Инструкция

1. В основном встречаются четыре типа задач, в которых нужно обнаружить ребро куба. Это определение длины ребра куба по площади грани куба, по объему куба, по диагонали грани куба и по диагонали куба. Разглядим все четыре варианта таких задач. (Остальные задания, как водится, являются вариациями вышеперечисленных либо задачами по тригонометрии, имеющими крайне косвенное отношение к рассматриваемому вопросу)Если вестима площадь грани куба, то обнаружить ребро куба дюже легко. Потому что грань куба представляет собой квадрат со стороной, равной ребру куба, то ее площадь равняется квадрату ребра куба. Следственно длина ребра куба равняется корню квадратному из площади его грани, то есть:а=?S, гдеа — длина ребра куба,S — площадь грани куба.

2. Нахождение грани куба по его объему еще проще. Рассматривая, что объем куба равен кубу (третьей степени) длины ребра куба, получаем что длина ребра куба равняется корню кубическому (третьей степени) из его объема, т.е.:а=?V (кубический корень), гдеа — длина ребра куба,V — объем куба.

3. Немногим труднее нахождение длины ребра куба по знаменитым длинам диагоналей. Обозначим через:а — длину ребра куба;b — длину диагонали грани куба;c — длину диагонали куба.Как видно из рисунка, диагональ грани и ребра куба образуют прямоугольный равносторонний треугольник. Следственно, по теореме Пифагора:a^2+a^2=b^2(^ — значок возведения в степень).Отсель находим:a=?(b^2/2)(дабы обнаружить ребро куба надобно извлечь квадратный корень из половины квадрата диагонали грани).

4. Дабы обнаружить ребро куба по его диагонали, вновь воспользуемся рисунком. Диагональ куба (с), диагональ грани (b) и ребро куба (а) образуют прямоугольный треугольник. Значит, согласно теореме Пифагора:a^2+b^2=c^2.Воспользуемся вышеустановленной зависимостью между a и b и подставим в формулуb^2=a^2+a^2. Получаем:a^2+a^2+a^2=c^2, откуда находим:3*a^2=c^2, следственно:a=?(c^2/3).

Куб — это прямоугольный параллелепипед, все ребра которого равны. Следственно всеобщая формула для объема прямоугольного параллелепипеда и формула для площади его поверхности в случае куба упрощаются. Также объем куба и его площадь поверхности дозволено обнаружить, зная объем шара, вписанного в него, либо шара, описанного вокруг него.

Вам понадобится

  • длина стороны куба, радиус вписанного и описанного шара

Инструкция

1. Объем прямоугольного параллелепипеда равен: V = abc — где a, b, c — его измерения. Следственно объем куба равен V = a*a*a = a^3, где a — длина стороны куба .Площадь поверхности куба равна сумме площадей всех его граней. Каждого у куба шесть граней, следственно площадь его поверхности равна S = 6*(a^2).

2. Пускай шар вписан в куб. Видимо, диаметр этого шара будет равен стороне куба . Подставляя длину диаметра в выражения для объема взамен длины ребра куба и применяя, что диаметр равен удвоенному радиусу, получим тогда V = d*d*d = 2r*2r*2r = 8*(r^3), где d — диаметр вписанной окружности, а r — радиус вписанной окружности.Площадь поверхности куба тогда будет равна S = 6*(d^2) = 24*(r^2).

3. Пускай шар описан вокруг куба . Тогда его диаметр будет совпадать с диагональю куба . Диагональ куба проходит через центр куба и соединяет две его противоположные точки.Разглядите для начала одну из граней куба . Ребра этой грани являются катетами прямоугольного треугольника, в котором диагональ грани d будет гипотенузой. Тогда по теореме Пифагора получим: d = sqrt((a^2)+(a^2)) = sqrt(2)*a.

4. После этого разглядите треугольник в котором гипотенузой будет диагональ куба , а диагональ грани d и одно из ребер куба a — его катетами. Подобно, по теореме Пифагора получим: D = sqrt((d^2)+(a^2)) = sqrt(2*(a^2)+(a^2)) = a*sqrt(3).Выходит, по выведенной формуле диагональ куба равна D = a*sqrt(3). Отсель, a = D/sqrt(3) = 2R/sqrt(3). Следственно, V = 8*(R^3)/(3*sqrt(3)), где R — радиус описанного шара.Площадь поверхности куба равна S = 6*((D/sqrt(3))^2) = 6*(D^2)/3 = 2*(D^2) = 8*(R^2).

Кубом называют объемный многоугольник с шестью гранями положительной формы — верный гексаэдр. Число положительных граней определяет форму всякой из них — это квадраты. Это, вероятно, самая комфортная из многогранных фигур с точки зрения определения ее геометрических свойств в привычной нам трехмерной системе координат. Все ее параметры дозволено вычислить, зная каждого лишь длину одного ребра.

Инструкция

1. Если у вас имеется некоторый физический объект в форме куба , то для вычисления его объема измерьте длину всякий грани, а после этого используйте алгорифм, описанный в дальнейшем шаге. Если же такое измерение нереально, то дозволено, скажем, испробовать определить объем вытесненной воды, разместив в нее данный кубический объект. Если удастся узнать число вытесненной воды в литрах, то итог дозволено перевести в кубические дециметры — один литр в системе СИ приравнен к одному кубическому дециметру.

2. Возводите в третью степень знаменитое значение длины ребра куба , то есть длину стороны квадрата, составляющего всякую из его граней. Утилитарные расчеты дозволено произвести на любом калькуляторе либо с подмогой поисковой системы Google. Если в поле поискового запроса ввести, скажем, «3,14 в кубе», то поисковик сразу (без нажатия кнопки) покажет итог.

3. Если знаменита только длина диагонали куба , то этого тоже абсолютно довольно для вычисления его объема. Диагональю положительного октаэдра называют отрезок, соединяющий две его противоположные касательно центра вершины. Длину такой диагонали через теорему Пифагора дозволено выразить как длину ребра куба , поделенную на корень из 3. Из этого вытекает, что для нахождения объема куба нужно его диагональ поделить на корень из 3 и итог построить в куб.

4. Подобно дозволено вычислить объем куба , зная только длину диагонали его грани. Из той же теоремы Пифагора вытекает, что длина ребра куба равна диагонали грани, поделенной на корень из 2-х. Объем в этом случае дозволено вычислить, поделив вестимую длину диагонали ребра на корень из 2-х и построив итог в куб.

5. Не забывайте о размерности полученного итога — если вы вычисляете объем исходя из вестимых размеров в сантиметрах, то итог будет получен в кубических сантиметрах. Один дециметр содержит десять сантиметров, а один кубический дециметр (литр) — 1000 (десять в кубе) кубических сантиметров. Соответственно, для перевода итога в кубические дециметры нужно поделить полученное значение в сантиметрах на 1000.

Видео по теме

jprosto.ru

Как вычислить объем куба - PontCost

Куб — трехмерная геометрическая фигура, у которой все ребра равны (длина равна ширине и равна высоте). У куба шесть квадратных граней, которые пересекаются под прямым углом и стороны которых равны. Вычислить объем куба легко – нужно перемножить длину, ширину и высоту. Так как у куба длина равна ширине и равна высоте, то объем куба равен s3, где s – длина одного (любого) ребра куба.

Прямоугольный параллелепипед, все грани которого — квадраты, называется кубом. Все ребра куба равны. Объем куба равен кубу его ребра:

V=h4

(H — высота ребра куба)

Возведение в куб ребра куба

Найдите длину одного ребра куба. Как правило, длина ребра куба дана в условии задачи. Если вы вычисляете объем реального объекта кубической формы, измерьте его ребро линейкой или рулеткой.

Рассмотрим пример. Ребро куба равно 5 см. Найдите объем куба.

Возведите в куб длину ребра куба. Другими словами, умножьте длину ребра куба саму на себя три раза. Если s — длина ребра куба, то s * s *s = s3 и, таким образом, вы вычислите объем куба.

Этот процесс аналогичен процессу нахождения площади основания куба (равна произведению длины на ширину квадрата в основании) и последующему умножению площади основания на высоту куба (то есть, другими словами, вы умножаете длину на ширину и на высоту). Так как в кубе длина ребра равна ширине и равна высоте, то этот процесс можно заменить возведением ребра куба в третью степень.

В нашем примере объем куба равен 5 * 5 *5 = 53 = 125.

К ответу припишите единицы измерения объема (если вы этого не сделаете, ваша оценка может быть снижена). Так как объем – это количественная характеристика пространства, занимаемого телом, то единицами измерения объема являются кубические единицы (кубические сантиметры, кубические метры и т.п.).

В нашем примере размер ребра куба давался в сантиметрах, поэтому объем будет измеряться в кубических сантиметрах (или в см3). Итак, объем куба равен 125 см3.

Если размер ребра куба дается в других единицах, то и объем куба измеряется в соответствующих кубических единицах. Например, если ребро куба равно 5 м (а не 5 см), то его объем равен 125 м3.

pontcost.com

Как найти ребро куба, если есть объем

Куб - это, пожалуй, самый простой трехмерный объект, как в природе, так и в стереометрии. Кубом называется прямоугольный параллелепипед, все ребра которого равны между собой. Также куб можно представить как шестигранник, все грани которого представляют собой равные квадраты. Благодаря высокой степени симметрии, достаточно знать лишь длину ребра куба, чтобы вычислить все остальные характеристики. А для того чтобы найти ребро куба, достаточно его объема.

Вам понадобится

Инструкция

  • Чтобы найти ребро куба, если есть объем, извлеките корень кубический из числового значения его объема. То есть найдите такое число, куб (третья степень) которого будет равняться объему куба.
  • Для вычисления кубического корня воспользуйтесь калькулятором. Лучше если это будет не «бухгалтерский» калькулятор, а калькулятор, предназначенный для инженерных расчетов. Однако даже на «инженерном» калькуляторе вы вряд ли найдете отдельную кнопку для извлечения кубического корня. Поэтому используйте функцию возведения в степень. Извлечению корня кубического соответствует возведение в степень «одна третья» (1/3).
  • Чтобы возвести число в степень 1/3, наберите само число. Затем нажмите на кнопку «возведение в степень». В зависимости от конструкции калькулятора, она может выглядеть как x^y, или xy (у – в виде маленького значка, расположенного чуть выше). Так как большинство калькуляторов не позволяет вводить дроби, вместо 1/3 наберите 0,33. Если желаете получить большую точность вычислений, увеличьте количество троек.
  • Если объем куба выражен в метрических системах единиц измерения, длина ребра куба будет измеряться в соответствующей линейной единице. Так, например, если объем куба равен 8000 метров кубических (м³), то длина его ребра будет равна 20 метров (м).Если объем куба выражен в производных от нестандартных линейных единиц измерения, то длина ребра получится в соответствующих линейных единицах. Так если объем куба задан в кубических дюймах, длина ребра получится в дюймах (линейных).Если объем куба задан в национальных, устаревших, бытовых и прочих специфических единицах измерения объема, предварительно переведите этот объем в наиболее подходящий метрический аналог – кубические миллиметры, дециметры или метры.

completerepair.ru