Вес тела. Сила реакции опоры. Сила натяжения нити. От чего зависит сила натяжения нити


Формула силы натяжения нити

ОПРЕДЕЛЕНИЕ

Сила натяжения нити равна сумме сил, действующих на нить, и противоположна им по направлению.

Здесь – сила натяжения нити, – векторная сумма сил, действующих на нить.

Единица измерения силы – Н (ньютон).

Эта формула – следствие третьего закона Ньютона применительно к нити. Если на нити подвешен какой-то груз, который находится в покое, то сила натяжения нити по модулю равна весу этого груза. Обычно в задачах участвует невесомая нерастяжимая нить, которая просто проводит через себя силу, однако встречаются задачи, где нить под воздействием силы растягивается. При этом она ведёт себя как пружина, подчиняясь закону Гука:

Где – жёсткость нити, — удлинение нити.

Примеры решения задач по теме «Сила натяжения нити»

Понравился сайт? Расскажи друзьям!

ru.solverbook.com

Вес тела. Сила реакции опоры. Сила натяжения нити | LAMPA

Многие из вас пользуются или пользовались обычной проводной компьютерной мышкой. Если такая проводная мышка рядом с вами, то посмотрите на нее (а если ее нет рядом — то представьте). Мы знаем, что, как и на все тела на Земле, на нее действует сила тяжести Fтяготения=m⋅gF_{тяготения}=m\cdot gFтяготения​=m⋅g.

Почему же она не падает вниз, а находится в состоянии покоя? Мы помним из 1-го закона Ньютона, что в инерциальных системах тело может находиться в состоянии покоя, если на него не действуют никакие силы (не наш случай) или действие всех сил скомпенсировано. Значит, что-то компенсирует действие силы тяжести. Но что? Мы забыли, что мышка лежит на столе. Мышка, на которую действует сила тяжести m⋅g⃗m\cdot\vec{g}m⋅g⃗​, в свою очередь давит на стол с силой, которую называют вес тела. Обычно вес тела обозначается P⃗\vec{P}P⃗. Но из 3-го закона Ньютона мы знаем: с какой силой мышка давит на стол (мышка→\rightarrow→стол), с точно такой же по величине силой стол давит на мышку (стол→\rightarrow→мышка). Сила, с которой стол давит на мышку, называется силой реакции опоры. Чаще всего она обозначается N⃗\vec{N}N⃗. Из 3-го закона Ньютона следует, что N⃗=−P⃗.\vec{N}=-\vec{P}{.}N⃗=−P⃗.

Заметьте, что сил три:

  • на тело действует сила тяжести m⋅g⃗m\cdot\vec{g}m⋅g⃗​
  • из-за действия силы тяжести на мышку мышка давит на стол с силой P⃗\vec{P}P⃗ (вес тела)
  • и уже стол "отвечает" мышке на ее давление силой реакции опоры N⃗\vec{N}N⃗.

Важно помнить, что хотя силы N⃗\vec{N}N⃗ и P⃗\vec{P}P⃗ связаны друг с другом и равны по модулю, но приложены они к разным телам. Еще раз:

  • вес тела P⃗\vec{P}P⃗ приложен к опоре (столу) со стороны мышки
  • сила реакции опоры N⃗\vec{N}N⃗ приложена к мышке со стороны стола как "ответ" стола на действие мышки.

Давайте посмотрим, насколько хорошо вы усвоили разницу между весом P⃗\vec{P}P⃗ и силой реакции опоры N⃗\vec{N}N⃗. Попробуйте решить классическую задачу.

lampa.io

Формулы нахождения силы натяжения нити и всё, что с этим связано

Силой натяжения называют ту, что действует на объект, сравнимый с проволокой, шнуром, кабелем, ниткой и так далее. Это могут быть несколько объектов сразу, в таком случае сила натяжения будет действовать на них и необязательно равномерно. Объектом натяжения называют любой предмет, подвешенный на все вышеперечисленное. Но кому это нужно знать? Несмотря на специфичность информации, она может пригодиться даже в бытовых ситуациях.

Например, при ремонте дома или квартиры. Ну и, конечно же, всем людям, чья профессия связана с расчетами:

  • инженерам;
  • архитекторам;
  • проектировщикам и пр.

Натяжения нити и подобных объектов

А зачем им это знать и какая от этого практическая польза? В случае с инженерами и конструкторами знания о мощи натяжения позволят создавать устойчивые конструкции. Это означает, что сооружения, техника и прочие конструкции смогут дольше сохранять свою целостность и прочность. Условно, эти расчеты и знания можно разделить на 5 основных пунктов, чтобы в полной мере понять, о чем идет речь.

1 Этап

Задача: определить силу натяжения на каждом из концов нити. Эту ситуацию можно рассматривать как результат воздействия сил на каждый конец нити. Она равняется массе, помноженной на ускорение свободного падения. Предположим, что нить натянута туго. Тогда любые воздействия на объект приведет к изменению натяжения (в самой нити). Но даже при отсутствии активных действий, по умолчанию будет действовать сила притяжения. Итак, подставим формулу: Т=м*g+м*а, где g – ускорение падения (в данном случае подвешенного объекта), а – любое иное ускорение, действующее извне.

Есть множество сторонних факторов, влияющих на расчеты – вес нити, ее кривизна и так далее. Для простых расчетов это мы не будем пока что учитывать. Иными словами – пусть нить будет идеальна с математической точки зрения и «без изъянов».

Возьмем «живой» пример. На балке подвешена прочная нить с грузом в 2 кг. При этом отсутствует ветер, покачивания и прочие факторы, так или иначе влияющие на наши расчеты. Тогда мощь натяжения равна силе тяжести. В формуле это можно выразить так: Fн=Fт=м*g, в нашем случае это 9,8*2=19,6 ньютона.

2 Этап

Заключается он в вопросе об ускорении. К уже имеющейся ситуации давайте добавим условие. Суть его в том, чтобы на нить действовало еще и ускорение. Возьмем пример попроще. Представим, что нашу балку теперь поднимают вверх со скоростью 3 м/с. Тогда, к натяжению прибавится ускорение груза и формула примет следующий вид: Fн=Fт+уск*м. Ориентируясь на прошлые расчеты получаем: Fн=19,6+3*2=25,6 ньютона.

3 Этап

Тут уже посложнее, так как речь идет об угловом вращении. Следует понимать, что при вращении объекта вертикально, сила, воздействующая на нить, будет намного больше в нижней точке. Но давайте возьмем пример с несколько меньшей амплитудой качания (по типу маятника). В этом случае для расчетов нужна формула: Fц=м* v²/r. Тут искомое значение обозначает дополнительную мощь натяжения, v – скорость вращения подвешенного груза, а r – радиус окружности, по которому вращается груз. Последнее значение фактически равняется длине нити, пускай она составляет 1,7 метра.

Итак, подставляя значения, находим центробежные данные: Fц=2*9/1,7=10,59 ньютона. А теперь, чтобы узнать полную силу натяжения нити, надо к имеющимся данным о состоянии покоя прибавить центробежную силу: 19,6+10,59=30,19 ньютона.

4 Этап

Следует учитывать меняющуюся силу натяжения по мере прохождения груза через дугу. Иными словами – независимо от постоянной величины притяжения, центробежная (результирующая) сила меняется по мере того, как качается подвешенный груз.

Чтобы лучше понять этот аспект, достаточно представить себе привязанный груз к веревке, которую можно свободно вращать вокруг балки, к которой она закреплена (как качели). Если веревку раскачать достаточно сильно, то в момент нахождения в верхнем положении сила притяжения будет действовать в «обратную» сторону относительно силы натяжения веревки. Иными словами – груз станет «легче», из-за чего ослабнет и натяжение на веревку.

Предположим, что маятник отклоняется на угол, равный двадцати градусам от вертикали и движется со скоростью 1,7 м/с. Сила притяжения (Fп) при этих параметрах будет равна 19,6*cos(20)=19,6*0,94=18,424 Н; центробежная сила (F ц=mv²/r)=2*1,7²/1,7=3,4 Н; ну а полное натяжение (Fпн) будет равняться Fп+ Fц=3,4+18,424=21,824 Н.

5 Этап

Его суть заключается в силе трения между грузом и другим объектом, что в совокупности косвенно влияет на натяжение веревки. Иначе говоря – сила трения способствует увеличению силы натяжения. Это хорошо видно на примере перемещения объектов по шершавой и гладкой поверхностях. В первом случае трение будет большим, поэтому и сдвигать предмет становится тяжелее.

Общее натяжение в данном случае вычисляется по формуле: Fн=Fтр+Fу, где Fтр – трение, а Fу – ускорение. Fтр=мкР, где мк – трение между объектами, а Р – сила взаимодействия между ними.

Чтобы лучше понять данный аспект, рассмотрим задачу. Допустим, у нас груз 2 кг и коэффициент трения равен 0,7 с ускорением движения 4м/с постоянной скорости. Теперь задействуем все формулы и получаем:

  1. Сила взаимодействия — Р=2*9,8=19,6 ньютона.
  2. Трение — Fтр=0,7*19,6=13,72 Н.
  3. Ускорение — Fу=2*4=8 Н.
  4. Общая сила натяжения — Fн=Fтр+Fу=13,72+8=21,72 ньютона.

Теперь вы знаете больше и можете сами находить и рассчитывать нужные значения. Конечно, для более точных расчетов нужно учитывать больше факторов, но для сдачи курсовой и реферата этих данных вполне достаточно.

Видео

Это видео поможет вам лучше разобраться в данной теме и запомнить ее.

liveposts.ru

Силы - натяжение - нить

Силы - натяжение - нить

Cтраница 3

Следовательно, на него действует сила, равная F ти К и направленная перпендикулярно оси вращения диска. Она является равнодействующей силы тяжести Р и силы натяжения нити Т: FP T.  [31]

Проследим за этой силой на примере маятника. Грузик маятника находится под действием силы тяжести и силы натяжения нити. Разложим силу тяжести на две составляющие - одну, направленную вдоль нити, и другую, идущую перпендикулярно к ней по касательной к траектории. Для движения существенна лишь касательная составляющая силы тяжести. Она-то и есть в этом случае возвращающая сила. Что касается силы, направленной вдоль нити, то она уравновешивается противодействием со стороны гвоздика, на котором висит маятник, и принимать ее в расчет надо лишь тогда, когда нас интересует вопрос, выдержит ли нить тяжесть колеблющегося тела.  [32]

Проследим за этой силой на примере маятника. Грузик маятника находится под действием силы тяжести и силы натяжения нити. Разложим силу тяжести на две составляющие - одну, направленную вдоль нити, и другую, идущую перпендикулярно к ней по касательной к траектории Для движения существенна лишь касательная составляющая силы тяжести. Она-то и есть в этом случае возвращающая сила. Что касается силы, направленной вдоль нити, то она уравновешивается противодействием со стороны гвоздика, на котором висит маятник, и принимать ее в расчет надо лишь тогда, когда нас интересует вопрос, выдержит ли нить тяжесть колеблющегося тела.  [33]

Рассмотрим сначала положение равновесия маятника в системе отсчета, связанной с точкой его подвеса. В этом положении равнодействующая R силы тяжести Р и силы натяжения нити Т должна обеспечивать маятнику ускорение, равное ускорению вагона о; поэтому она должна равняться та, где т - масса маятника.  [34]

Рассмотрим сначала положение равновесия маятника в системе отсчета, связанной с точкой его подвеса. В этом положении равнодействующая К силы тяжести Р и силы натяжения нити Т должна обеспечивать маятнику ускорение, равное ускорению вагона а; поэтому она должна равняться та, где m - масса маятника.  [35]

В инерциальной системе координат силы инерции отсутствуют. Силы, действующие на маятник, показаны на рис. 65, в - это силы натяжения нити и тяжести.  [36]

В инерциальной системе координат силы инерции отсутствуют. Силы, действующие на маятник, показаны на рис. 156, в - это силы натяжения нити и тяжести.  [37]

Для того чтобы шарик имел такое же ускорение, необходимо, чтобы равнодействующая силы тяжести mg и силы натяжения нити Т, приложенных к шарику ( рис. 198), была направлена параллельно наклонной плоскости и равна F та mg sin а. А это возможно только тогда, когда нить перпендикулярна к наклонной плоскости.  [38]

Момент сил создается грузом ц, привязанным к нити Н, которая навита на один из шкивов. Если момент сил трения Мтр, приложенный к оси маятника, мал по сравнению с моментом М силы натяжения нити, то проверка уравнения ( 1) не представляет труда.  [40]

Этой силой является сила упругости растянутой пружины. Отклонение шара В от вертикали он объяснит тем, что для ускоренного движения тела В нужна сила, которая появится как результирующая силы натяжения нити и силы тяжести, действующей на шар.  [41]

Выясним, каковы будут условия равновесия в этом случае. Если вес картона мал по сравнению с весами гирь, то им можно пренебречь и считать, что к картону приложены только силы натяжения нитей. Опыт покажет, что при равновесии все нити ( а значит, и силы, действующие на картон) расположатся в одной плоскости.  [43]

Учитывая силы инерции, мы приходим к задаче о равновесии по отношению к вагону подвешенного на нити груза под действием силы веса, силы натяжения нити и силы инерции. На рис. 211 показаны все эти силы.  [45]

Страницы:      1    2    3    4

www.ngpedia.ru

Силы - натяжение - нить

Силы - натяжение - нить

Cтраница 1

Силы натяжения нити и возвращающая возрастут; период колебаний уменьшится.  [1]

Силы натяжения нити во всех точках будут одинаковы.  [2]

Силы натяжения нитей действуют не только на грузы, но и на диск. По третьему закону Ньютона силы Ti и Т2, приложенные к ободу диска, по величине равны соответственно силам T. Тг, но по направлению им противоположны.  [3]

Силы натяжения нити я возвращающая возрастут; период колебаний уменьшится.  [4]

Указание, я) Равнодействующая силы натяжения нити и силы тяжести шарика направлена перпендикулярно нити и сообщает шарику начальное ускорение а д sin ос.  [5]

С каким ускорением движутся тела и каковы силы натяжения нити по обе стороны от блока. Массу блока можно считать равномерно распределенной по ободу, трением в подшипниках оси блока пренебречь.  [6]

Найти ускорения грузов mj и т2, силы натяжения нитей и силу, с которой система действует на ось блока.  [7]

На тело действует сила тяжести mg и силы натяжения нитей F.  [8]

Чтобы устранить вредное влияние изменяющейся ( уменьшающейся) силы натяжения нити на равномерность физико-механических свойств вискозной текстильной нити, формующейся по центрифугальному способу на современных прядильных центрифуга л ьных машинах, применяют переменные в течение наработки съема скорости формования и вытяжки волокна.  [9]

С целью устранения вредного влияния изменяющейся ( уменьшающейся) силы натяжения нити на равномерность физико-механических свойств вискозной текстильной нити, формующейся по центрифугальному способу, на многих типах современных прядильных центрифугальных машин применяют переменные в течение наработки съема скорости формования и вытяжки волокна ( см. стр.  [10]

Каждый из грузов движется под действием силы тяжести и силы натяжения нити. Невесомость нити позволяет считать силу натяжения вдоль нити постоянной по модулю. Уравнения второго закона Ньютона, записанные в скалярном виде для каждого из тел, составят систему, в которой неизвестными будут силы натяжения нити и относительные ускорения грузов.  [11]

Колебания кубика в чаше вполне аналогичны колебаниям математического маятника, только вместо силы натяжения нити на кубик действует сила реакции опоры.  [12]

Считая, что система находится в фиктивном даламберовом равновесии, легко определить силы натяжения нитей. Очевидно, они равны геометрической сумме сил, приложенных к одному из концов данного участка нити.  [13]

Если теперь считать, что масса блока равна нулю и трение в его оси отсутствует, то силы натяжения нити будут одинаковы по обе стороны от блока. Предположение об отсутствии трения не требует особых комментариев. Если допустить, что при этом силы натяжения Т1 и Т2, действующие на блок слева и справа, не равны друг другу, то при нулевой массе блок должен был бы раскручиваться с бесконечно большим угловым ускорением.  [14]

В нижней точке траектории сосуда центростремительное ускорение а uV сообщается сосуду равнодействующей R силы тяжести Mg ir - силы натяжения нити Т ( М - масса сосуда с водой, г - расстояние от оси вращения сосуда до. Сила тяжести Mg направлена вниз, а сила натяжения Т - вверх.  [15]

Страницы:      1    2    3    4

www.ngpedia.ru

Раздел 16. Сила натяжения нити. — КиберПедия

 

1. Гиря массой 5 кг подвешена к потолку на двух одинаковых веревках, прикрепленных к потолку в двух разных точках. Нити образуют угол a = 60° друг с другом (см. рис.). Найдите силу натяжения каждой нити.

2. (д) Ёлочный шарик подвешен к горизонтально расположенной ветке на двух одинаковых нитках, прикрепленных к ветке в двух разных точках. Нити образуют угол a = 90° друг с другом. Найдите массу шарика, если сила натяжения каждой нитки равна 0,1 Н.

3. Большая железная труба подвешена за концы к крюку крана на двух одинаковых тросах, образующих угол 120° друг с другом (см. рис.). Сила натяжения каждого троса 800 Н. Найдите массу трубы.

4. (д) Бетонную балку массой 400 кг, подвешенную за концы к крюку на двух тросах, башенный кран поднимает вверх с ускорением 3 м/с2, направленным вверх. Угол между тросами составляет 120°. Найдите силу натяжения тросов.

5. К потолку на нити подвешен груз массой 2 кг, к которому, на другой нити, подвешен груз массой 1 кг (см. рис.). Найдите силу натяжения каждой из нитей.

6. (д) К потолку на нити подвешен груз массой 500 г, к которому, на другой нити, подвешен еще один груз. Сила натяжения нижней нити равна 3 Н. Найдите массу нижнего груза и силу натяжения верхней нити.

7. Груз массой 2,5 кг поднимают на нити с ускорением 1 м/с2, направленным вверх. К этому грузу, на другой нити, подвешен второй груз. Сила натяжения верхней нити (т.е. за которую тянут вверх) составляет 40 Н. Найдите массу второго груза и силу натяжения нижней нити.

8. (д) Груз массой 2,5 кг опускают на нити с ускорением 3 м/с2, направленным вниз. К этому грузу, на другой нити, подвешен второй груз. Сила натяжения нижней нити составляет 1 Н. Найдите массу второго груза и силу натяжения верхней нити.

9. Через неподвижный блок, прикрепленный к потолку, перекинута невесомая и нерастяжимая нить. К концам нити подвешены грузы массами m1 = 2 кг и m2 = 1 кг (см. рис.). В какую сторону и с каким ускорением движется каждый из грузов? Какова сила натяжения нити?

10. (д) Через неподвижный блок, прикрепленный к потолку, перекинута невесомая и нерастяжимая нить. К концам нити подвешены грузы. Масса первого груза m1 = 0,2 кг. Он движется вверх с ускорением 3 м/с2. Какова масса второго груза? Какова сила натяжения нити?

11. Через неподвижный блок, прикрепленный к потолку, перекинута невесомая и нерастяжимая нить. К концам нити подвешены грузы. Масса первого груза m1 = 0,2 кг. Он движется вверх, увеличивая скорость от 0,5 м/с до 4 м/с за 1 с. Какова масса второго груза? Какова сила натяжения нити?

12. (д) Через неподвижный блок, прикрепленный к потолку, перекинута невесомая и нерастяжимая нить. К концам нити подвешены грузы массами m1 = 400 г и m2 = 1 кг. Их удерживают в состоянии покоя, а затем отпускают. С каким ускорением движется каждый из грузов? Какое расстояние пройдет каждый из них за 1 с движения?

13. Через неподвижный блок, прикрепленный к потолку, перекинута невесомая и нерастяжимая нить. К концам нити подвешены грузы массами m1 = 400 г и m2 = 0,8 кг. Их удерживают в состоянии покоя на одном уровне, а затем отпускают. Каким будет расстояние между грузами (по высоте) через 1,5 с после начала движения?

14. (д) Через неподвижный блок, прикрепленный к потолку, перекинута невесомая и нерастяжимая нить. К концам нити подвешены грузы. Масса первого груза m1 = 300 г. Грузы удерживают в состоянии покоя на одном уровне, а затем отпускают. Через 2 с после начала движения разность высот, на которых находятся грузы, достигла 1 м. Какова масса m2 второго груза и каково ускорение грузов?

 

Задачи на конический маятник

 

15. Маленький шарик массой 50 г, подвешенный на невесомой нерастяжимой нити длиной 1 м, совершает движение по окружности в горизонтальной плоскости. Нить составляет с вертикалью угол 30°. Какова сила натяжения нити? Какова скорость движения шарика?

16. (д) Маленький шарик, подвешенный на невесомой нерастяжимой нити длиной 1 м, совершает движение по окружности в горизонтальной плоскости. Нить составляет с вертикалью угол 30°. Какова угловая скорость движения шарика?

17. Шарик массой 100 г совершает движения по окружности радиусом 1 м, будучи подвешенным на невесомой и нерастяжимой веревке длиной 2 м. Какова сила натяжения веревки? Какой угол с вертикалью составляет веревка? Какова скорость движения шарика?

18. (д) Шарик массой 85 г совершает движения по окружности радиусом 50 см, будучи подвешенным на невесомой и нерастяжимой веревке длиной 577 мм. Какова сила натяжения веревки? Какой угол с вертикалью составляет веревка? Какова угловая скорость движения шарика?

 

Раздел 17.

Вес тела, сила реакции опоры и невесомость.

 

1. Человек массой 80 кг находится в лифте, движущемся с ускорением 2,5 м/с2, направленным вверх. Каков вес человека в лифте?

2. (д) Человек находится в лифте, движущемся с ускорением 2 м/с2, направленным вверх. Какова масса человека, если его вес составляет 1080 Н?

3. Балку массой 500 кг опускают на тросе с ускорением 1 м/с2, направленным вниз. Каков при этом вес балки? Какова сила натяжения троса?

4. (д) Циркового акробата поднимают вверх на канате с ускорением 1,2 м/с2, направленным также вверх. Какова масса акробата, если сила натяжения каната равна 1050 Н? Каков вес акробата?

5. Если лифт движется с ускорением, равным 1,5 м/с2 , направленным вверх, то вес человека, находящегося в лифте, равен 1000 Н. Каким будет вес человека, если лифт будет двигаться с таким же ускорением, но направленным вниз? Какова масса человека? Каков вес этого человека в неподвижном лифте?

6. (д) Если лифт движется с ускорением, направленным вверх, то вес человека в лифте составляет 1000 Н. Если же лифт движется с таким же, по модулю, ускорением, но направленным вниз, то вес человека составляет 600 Н. Каково ускорение лифта и какова масса человека?

7. Человек массой 60 кг поднимается в лифте, движущемся равноускоренно вверх. Покоившийся лифт за 2 с набрал скорость 2,5 м/с. Каков вес человека при этом?

8. (д) Человек массой 70 кг поднимается в лифте, движущемся равноускоренно вверх. Покоившийся лифт за 2 с прошел расстояние 4 м. Каков вес человека при этом?

9. Радиус скругления выпуклого моста равен 200 м. По мосту движется автомобиль массой 1 т со скоростью 72 км/час. Каков вес автомобиля в верхней точке моста?

10. (д) Радиус скругления выпуклого моста равен 150 м. По мосту движется автомобиль массой 1 т. Его вес в верхней точке моста составляет 9500 Н. Какова скорость автомобиля?

11. Радиус скругления выпуклого моста равен 250 м. По мосту движется автомобиль со скоростью 63 км/час. Его вес в верхней точке моста составляет 20000 Н. Какова масса автомобиля?

12. (д) По выпуклому мосту движется автомобиль массой 1 т со скоростью 90 км/час. Вес автомобиля в верхней точке моста составляет 9750 Н. Каков радиус кривизны выпуклой поверхности моста?

13. Трактор массой 3 т въезжает на горизонтальный деревянный мост, который прогибается под действием тяжести трактора. Скорость трактора равна 36 км/час. Вес трактора в самой нижней точки прогиба моста составляет 30500 Н. Каков радиус скругления поверхности моста?

14. (д) Трактор массой 3 т въезжает на горизонтальный деревянный мост, который прогибается под действием тяжести трактора. Скорость трактора равна 54 км/час. Радиус скругления поверхности моста равен 120 м. Каков вес трактора?

15. Деревянный горизонтальный мост может выдержать нагрузку 75000 Н. Масса танка, который должен проехать по мосту, 7200 кг. С какой скоростью может двигаться танк по мосту, если при этом мост прогибается так, что радиус скругления моста составляет 150 м?

16. (д) Длина деревянного моста 50 м. Грузовик, движущийся с постоянной по модулю скоростью, проезжает мост за 5 с. При этом максимальный прогиб моста таков, что радиус скругления его поверхности равен 220 м. Вес грузовика в середине моста составляет 50 кН. Какова масса грузовика?

17. Автомобиль движется по выпуклому мосту, радиус кривизны которого 150 м. При какой скорости движения автомобиля водитель почувствует невесомость? Что еще он почувствует (если, конечно, водитель - нормальный человек)?

18. (д) Автомобиль движется по выпуклому мосту. Водитель машины почувствовал, что в самой верхней точке моста при скорости 144 км/час машина теряет управление? Почему это происходит? Каков радиус кривизны поверхности моста?

19. Космический корабль стартует вверх с ускорением 50 м/с2. Какую перегрузку испытывают космонавты в корабле?

20. (д) Космонавт может выдержать десятикратную кратковременную перегрузку. Каким в это время должно быть направленное вверх ускорение космического корабля?

 

cyberpedia.su

Сила - натяжение - Большая Энциклопедия Нефти и Газа, статья, страница 1

Сила - натяжение

Cтраница 1

Сила натяжения 5, следовательно, может считаться известной.  [2]

Сила натяжения Т МЛ, развиваемая вакуумным ведущим валом, определяется по формуле T & PSaf, где ДРРа-Рв - разность давлений внешнего и внутреннего на ленту; Sn - суммарная площадь эффективного прижатия МЛ к ведущему валу; / - коэффициент трения пары МЛ - ведущий вал.  [4]

Сила натяжения равна силе тяжести тела.  [5]

Сила натяжения или сила растяжения, необходимая для вытягивания ленты, в большой степени зависит от влажности и температуры материала.  [7]

Сила натяжения ремней одинакова у компрессора и двигателя. Эта сила нагружает опоры машин на раме и уравновешивается в раме, изгибая ее. На опоры рамы эта сила не действует.  [8]

Сила натяжения, необходимая для движения пустой ленты.  [9]

Сила натяжения, необходимая для перемещения груза на длину конвейера.  [10]

Сила натяжения, необходимая для подъема или опускания груза на наклонный конвейер. Эта сила положительная для подъемных конвейеров ( транспортеров) и отрицательная для опускающих.  [11]

Сила натяжения 7 стремится выпрямить эту дугу.  [12]

Сила натяжения должна быть достаточной, чтобы обеспечить плотную намотку ч ленты на катушку, но не должна превосходить прочность ленты.  [13]

Сила натяжения подвеса Т - сила, с которой подвес действует на тело. Эта сила направлена вдоль оси подвеса. При этом нить может быть перекинута через систему невесомых блоков. Обычно нить считается нерастяжимой и зависимость силы натяжения нити от деформации не рассматривается.  [14]

Сила натяжения моноопоры при качке плавоснования не меняется, так как плавоснование и ЗС перемещаются на волне синхронно. А так как ЗС надет на зафиксированную в дне моря моноопору, он не раскачивается силами давления волн и течений в горизонтальной плоскости и, в отличие от известных схожих решений, не требует для предотвращения раскачивания применения специальных устройств, затрат материалов, труда и времени на их изготовление, монтаж и демонтаж.  [15]

Страницы:      1    2    3    4

www.ngpedia.ru