Плутоний. Описание плутония. Свойства плутония. Получение плутония


Плутоний. Описание плутония. Свойства плутония

Описание плутония

Плутоний (Plutonium) представляет собой тяжелый химический элемент серебристого цвета, радиоактивный металл с атомным числом 94, который в периодической таблице Менделеева обозначается символом Pu.

Данный электроотрицательный активный химический элемент относится к группе актиноидов с атомной массой 244,0642, и, как и нептуний, который получил свое название в честь одноименной планеты, своим названием этот химический обязан планете Плутон, поскольку предшественниками радиоактивного элемента в периодической таблице химических элементов Менделеева является уран и нептуний, которые также были названы в честь далеких космических планет нашей Галактики.

Происхождение плутония

Элемент плутоний впервые был открыт в 1940 году в Калифорнийском Университете группой ученых-радиологов и научных исследователей Г. Сиборгом, Э. Макмилланом, Кеннеди, А. Уолхом при бомбардировании урановой мишени из циклотрона дейтронами —  ядрами тяжелого водорода.

В декабре того же года учеными был открыт изотоп плутония – Pu-238, период полураспада которого составляет более 90 лет, при этом было установлено, что под воздействием сложнейших ядерных химических реакций изначально получается изотоп нептуний-238, после чего уже происходит образование изотопа плутония-238.

В начале 1941 года ученые открыли плутоний 239 с периодом распада в 25 000 лет. Изотопы плутония могут иметь различное содержание нейтронов в ядре.

Чистое соединение элемента смогли получить только в конце 1942. Каждый раз, когда ученые-радиологи открывали новый изотоп, они всегда измеряли время периодов полураспада изотопов.

В настоящий момент изотопы плутония, которых всего насчитывается 15, отличаются по времени продолжительности периода полураспада. Именно с этим элементом связаны большие надежды, перспективы, но и в тот же момент, серьезные опасения человечества.

Плутоний имеет значительно большую активность, чем, к примеру, уран и принадлежит к самым дорогостоящим технически важным и значимым веществам химической природы.

К примеру, стоимость грамма плутония в несколько раз больше цены одного грама платина, золота, серебра или других не менее ценных металлов.

Производство, добыча плутония считается затратной, а стоимость одного грамма металла в наше время уверенно держится на отметке в 4000 американских долларов.

Как получают плутоний? Производство плутония

Производство химического элемента происходит в атомных реакторах, внутри которых уран расщепляется под воздействием сложных химическо-технологических взаимосвязанных процессов.

Уран и плутоний являются главными, основными компонентами при производстве атомного (ядерного) горючего.

При необходимости получения большого количества радиоактивного элемента применяют метод облучения трансурановых элементов, которые можно получить из отработанного атомного топлива и облучения урана. Протекание сложных химических реакций позволяет отделить металл от урана.

Чтобы получить изотопы, а именно плутоний-238 и оружейный плутоний-239, которые представляют собой промежуточные продукты распада, используют облучение нептуния-237 нейтронами.

Ничтожно малую часть плутония-244, который является самым «долгоживущим» вариантом изотопа, по причине его длительного периода полураспада, обнаружили при исследованиях в цериевой руде, которая, скорее всего, сохранилась с момента формирования нашей Планеты Земля. В естественном виде в природе данный радиоактивный элемент не встречается.

Основные физические свойства и характеристики плутония

Плутоний — довольно тяжелый радиоактивный химический элемент серебристого цвета, который блестит только в очищенном виде. Атомная масса металла плутоний равна 244 а. е. м.

По причине своей высокой радиоактивности данный элемент теплый на ощупь, может разогреться до температуры, которая превышает температурный показатель при кипении воды.

Плутоний, под воздействием атомов кислорода быстро темнеет и покрывается радужной тонкой пленочкой изначально светло-желтого, а затем насыщенного красно—коричневого или бурого оттенка.

При сильном окислении происходит образование на поверхности элемента изумрудно—желтого порошка PuO2. Данный вид химического металла подвержен сильным процессам окисления и воздействия коррозии даже при незначительном уровне влажности.

Чтобы предотвратить коррозирование и оксидировании поверхности металла, необходима сушильная печь. Фото плутония можно посмотреть ниже.

Плутоний относится к четырехвалентным химическим металлам, хорошо и быстро растворяется в йодистоводородных веществах, кислых средах, к примеру, в азотной, хлорной, соляной кислотах.

Соли металла быстро нейтрализуются в средах с нейтральной реакцией, щелочных растворах, при этом образовывая нерастворимый гидрооксид плутония.

Температура, при которой происходит плавление плутония равна 641 градусам Цельсия, температура кипения – 3230 градусов.

Под воздействием высоких температурных режимов происходят неестественные изменения плотности металла. В твердом виде плутоний обладает различными фазами, имеет шесть кристаллических структур.

При переходе между фазами происходят значительные изменения объемах элемента. Наиболее плотную форму элемент приобретает в шестой альфа-фазе (последняя стадия перехода), при этом тяжелее металла в этом состоянии бывает только иридий, платина, нептуний, радий.

При расплавлении происходит сильное сжатие элемента, поэтому металл может держаться на поверхности воды и других неагрессивных жидких сред.

Несмотря на то, что данный радиоактивный элемент принадлежит к группе химических металлов, элемент довольно летуч, и при нахождении в закрытом пространстве за непродолжительный период времени увеличивается и возрастает в несколько раз его концентрация в воздухе.

К основным физическим свойствам металла можно отнести: невысокую степень, уровень теплопроводности из всех существующих и известных химических элементов, низкий уровень электропроводности, в жидком состоянии плутоний относится к одним из наиболее вязких металлов.

Стоит отметить, что любые соединения плутония относятся к токсичным, ядовитым и представляют серьезную опасность облучения для человеческого организма, которое происходит по причине активного альфа-излучения, поэтому все работы нужно выполнять предельно внимательно и только в специальных костюмах с химической защитой.

Больше о свойствах, теориях происхождения уникального металла можно прочитать в книге Обручева «Плутония». Автор В.А. Обручев приглашает читателей окунуться в удивительный и уникальный мир фантастической страны Плутония, которая расположена в глубине недр Земли.

Применение плутония

Промышленный химический элемент принято классифицировать на оружейный и реакторный («энергетический») плутоний.

Так, для производства ядерного вооружения из всех существующих изотопов допустимо применять только плутоний 239, в котором не должно быть более 4.5% плутония 240, так как он подвержен самопроизвольному делению, что значительно затрудняет изготовление боевых снарядов.

Плутоний-238 находит применение для функционирования малогабаритных радиоизотопных источников электрической энергии, к примеру, в качестве источника энергии для космической техники.

Несколько десятилетий тому назад плутоний применяли в медицине в кардиостимуляторах (приборы для поддержания сердечного ритма).

Первая атомная бомба, созданная в мире, имела плутониевый заряд. Ядерный плутоний  (Pu 239) востребован как ядерное топливо для обеспечения функционирования энергетических реакторов. Также этот изотоп служит источником для получения в реакторах трансплутониевых элементов.

Если провести сравнение ядерного плутония с чистым металлом, изотоп обладает более высокими металлическими параметрами, не имеет фаз перехода, поэтому его широко используют в процессе получения элементов топлива.

Оксиды изотопа Плутония 242 также востребованы как источник питания для космических летальных агрегатов, техники, в ТВЭЛах.

Оружейный плутоний – это элемент, который представлен в виде компактного металла, в котором содержится не меньше 93% изотопа Pu239.

Данный вид радиоактивного металла применяют про производстве различных видов ядерного оружения.

Получают оружейный плутоний в специализированных промышленных атомных реакторах, которые функционируют на природном или на низкообогащенном уране, в результате захвата им нейтронов.

tvoi-uvelirr.ru

описание металла, производство, синтез, критическая масса, оружейный плутоний

Этот металл называют драгоценным, однако не за красоту, а за незаменимость. В периодической системе Менделеева этот элемент занимает ячейку под номером 94. Именно с ним ученые связывают свои самые большие надежды, и именно плутоний они называют самым опасным металлом для человечества.

Плутоний: описание

По внешнему виду это серебристо-белый металл. Он является радиоактивным и может быть представлен в виде 15 изотопов, имеющих различные периоды полураспада, к примеру:

  • Pu-238 – около 90 лет
  • Pu-239 – около 24 тысяч лет
  • Pu-240 – 6580 лет
  • Pu-241 – 14 лет
  • Pu-242 – 370 тысяч лет
  • Pu-244 – около 80 миллионов лет

Этот металл нельзя добыть из руды, поскольку он является продуктом радиоактивного превращения урана.

Как получают плутоний?

Производство плутония требует расщепления урана, что можно осуществить только в атомных реакторах. Если же говорить о присутствии элемента Pu в земной коре, то на 4 миллиона тонн урановой руды будет приходиться всего 1 грамм чистого плутония. И этот грамм образуется путем естественного захвата нейтронов ядрами урана. Таким образом, чтобы получить это ядерное горючее (обычно – изотоп 239-Pu) в количестве нескольких килограмм необходимо проведение сложного технологического процесса в атомном реакторе.

Свойства плутония

Радиоактивный металл плутоний обладает следующими физическими свойствами:

  • плотность 19,8 г/см3
  • температура плавления – 641°C
  • температура кипения – 3232°C
  • теплопроводность (при 300 K) – 6,74 Вт/(м·К)

Плутоний радиоактивен, поэтому теплый на ощупь. При этом для этого металла характерна самая низкая теплопроводность и электропроводность. Жидкий плутоний является самым вязким из всех существующих металлов.

Малейшее изменение температуры плутония приводит к моментальному изменению плотности вещества. В целом же, масса плутония постоянно меняется, поскольку ядра этого металла находятся в состоянии постоянного деления на более мелкие ядра и нейтроны. Критическая масса плутония – так называют минимальную массу делимого вещества, при которой протекание деления (цепной ядерной реакции) остается возможным. К примеру, критическая масса оружейного плутония – 11 кг (для сравнения, критическая масса высокообогащенного урана – 52 кг).

Синтез плутония

Уран и плутоний – основное ядерное горючее. Чтобы получить плутоний в больших количествах применяется две технологии:

  • облучение урана
  • облучение трансурановых элементов, полученных из отработанного топлива

Оба способа представляют собой отделение плутония и урана в результате протекания химической реакции.

Для получения чистого плутония-238 применяется нейтронное облучение нептуния-237. Этот же изотоп участвует в создании оружейного плутония-239, в частности, он является промежуточным продуктом распада. $1 млн. – именно столько составляет цена за 1 кг плутония-238.

fx-commodities.ru

Оружейный плутоний: применение, производство, утилизация

Человечество всегда пребывало в поисках новых источников энергии, способных решить множество проблем. Однако далеко не всегда они являются безопасными. Так, в частности, широко применяемые сегодня атомные реакторы хотя и способны выработать просто колоссальное количество такой нужной всем электрической энергии, все же несут в себе смертельную опасность. Но, помимо использования ядерной энергии в мирных целях, некоторые страны нашей планеты научились использовать ее и в военных, в особенности для создания ядерных боеголовок. В данной статье пойдет речь об основе такого разрушительного оружия, название которой - оружейный плутоний.

Краткая справка

В этой компактной форме металла содержится минимум 93,5 % изотопа 239Pu. Оружейный плутоний назвали так для того, чтобы его было можно отличить от «реакторного собрата». В принципе, плутоний всегда образовывается в абсолютно любом ядерном реакторе, который, в свою очередь, работает на низкообогащённом или природном уране, содержащем, по большей части, изотоп 238U.

Применение в военной отрасли

Оружейный плутоний 239Pu – основа ядерного вооружения. При этом применение изотопов с массовыми числами 240 и 242 неактуально, поскольку они создают очень высокий фон нейтронов, что в итоге затрудняет создание и конструирование высокоэффективных ядерных боекомплектов. Помимо этого, изотопы плутония 240Pu и 241Pu обладают значительно меньшим периодом полураспада по сравнению с 239Pu, поэтому детали из плутония сильно нагреваются. Именно в связи с этим в ядерный боеприпас инженеры вынуждены дополнительно добавлять элементы для отвода лишнего тепла. Кстати, 239Pu в чистом виде теплее тела человека. Нельзя также не учитывать и факт того, что продукты процесса распада тяжелых изотопов подвергают вредоносным изменениям кристаллическую решетку металла, а это вполне закономерно изменяет конфигурацию деталей из плутония, что, в конце концов, может вызвать полный отказ ядерного взрывного устройства.

По большому счету, все перечисленные трудности можно преодолеть. И на практике уже неоднократно проходили испытания взрывных устройств на основе именно «реакторного» плутония. Но следует понимать, что в ядерных боеприпасах далеко не последнюю позицию занимает их компактность, малая собственная масса, долговечность и надежность. В связи с этим в них применяется исключительно оружейный плутоний.

Конструктивные особенности производственных реакторов

Практически весь плутоний в России был выработан в реакторах, оборудованных графитовым замедлителем. Каждый из реакторов возведен вокруг цилиндрически собранных блоков из графита.

В собранном виде графитовые блоки имеют между собой специальные щели для обеспечения беспрерывной циркуляции охладителя, в качестве которого используется азот. В собранной конструкции имеются и вертикально расположенные каналы, созданные для прохождения по ним водяного охлаждения и топлива. Сама по себе сборка жестко опирается на структуру с отверстиями под каналами, используемыми для отгрузки уже облученного топлива. При этом каждый из каналов находится в тонкостенной трубе, отлитой из легковесного и особопрочного алюминиевого сплава. Большая часть описываемых каналов имеет 70 топливных стержней. Вода для охлаждения протекает непосредственно вокруг стержней с топливом, отводя от них излишки тепла.

Повышение мощности производственных реакторов

Изначально первый реактор «Маяк» функционировал с мощностью 100 тепловых МВт. Однако главный руководитель советской программы по разработке ядерного оружия Игорь Курчатов внес предложение, которое заключалось в том, чтобы реактор в зимнее время работал с мощностью 170-190 МВт, а в летний период времени – 140-150 МВт. Такой подход позволил реактору производить почти 140 граммов драгоценного плутония в сутки.

В 1952 году были проведены полноценные научно-исследовательские работы, с целью увеличения производственной мощности функционирующих реакторов такими методами:

  • Путем увеличения потока воды, используемой для охлаждения и протекающей через активные зоны ядерной установки.
  • Посредством наращивания сопротивления явлению коррозии, возникающей вблизи вкладыша каналов.
  • Уменьшением скорости окисления графита.
  • Наращиванием температуры внутри топливных элементов.

В итоге пропускная способность циркулирующей воды значительно возросла после того, как был увеличен зазор между топливом и стенками канала. От коррозии также удалось избавиться. Для этого выбрали наиболее подходящие алюминиевые сплавы и начали активно добавлять бихромат натрия, что, в конечном счете, повысило мягкость охлаждающей воды (рН стал равен порядка 6.0-6.2). Окисление графита перестало быть актуальной проблемой после того, как для его охлаждения стали применять азот (до этого использовался исключительно воздух).

На закате 1950-х нововведения были полностью реализованы на практике, что позволило уменьшить вызываемое радиацией крайне ненужное раздувание урана, значительно снизить тепловое упрочнение стержней из урана, улучшить сопротивление оболочки и повысить контроль качества производства.

Производство на «Маяке»

"Челябинск-65" – один из тех самых секретных заводов, на котором происходило создание оружейного плутония. На предприятии было несколько реакторов, с каждым из которых мы познакомимся поближе.

Реактор А

Установка была спроектирована и создана под руководством легендарного Н. А. Доллежаля. Работала она с мощностью 100 МВт. В реакторе имелось 1149 вертикально расположенных управляющих и топливных каналов в графитовом блоке. Полная масса конструкции составляла порядка 1050 тонн. Практически все каналы (кроме 25) загружались ураном, полная масса которого составляла 120-130 тонн. 17 каналов использовались для управляющих стержней, а 8 - для проведения экспериментов. Максимальный показатель проектного тепловыделения топливного элемента равнялось 3,45 кВт. На первых порах реактор производил около 100 грамм плутония в день. Впервые металлический плутоний был произведен 16 апреля 1949 года.

Технологические недостатки

Практически сразу были выявлены довольно серьёзные проблемы, которые заключались в коррозии алюминиевых вкладышей и покрытия топливных элементов. Также разбухали и повреждались урановые стержни и вытекала охлаждающая вода непосредственно в сердцевину реактора. После каждой протечки реактор приходилось останавливать на время до 10 часов с целью осушить графит воздухом. В январе 1949 года были заменены вкладыши в каналы. После этого запуск установки произошел 26 марта 1949 года.

Оружейный плутоний, производство которого на реакторе А сопровождалось всяческими трудностями, вырабатывался в период 1950-1954 годов при средней мощности агрегата 180 МВт. Последующая работа реактора начала сопровождаться более интенсивным его использованием, что вполне закономерно привело и к более частым остановкам (до 165 раз в месяц). В итоге, в октябре 1963 года реактор был остановлен и возобновил свою работу лишь весной 1964 года. Свою кампанию он полностью закончил в 1987 году и за весь период многолетнего функционирования произвел 4,6 тонны плутония.

Реакторы АВ

На предприятии "Челябинск-65" три реактора АВ было решено построить осенью 1948 года. Их производственная мощность составляла 200-250 грамм плутония в день. Главным конструктором проекта был А. Савин. Каждый реактор насчитывал 1996 каналов, 65 из них были контрольными. В установках была использована техническая новинка – каждый канал снабдили специальным детектором утечки охлаждающей жидкости. Такой ход позволил менять вкладыши без прекращения работы самого реактора.

Первый год функционирования реакторов показал, что они вырабатывали порядка 260 граммов плутония в сутки. Однако уже со второго года работы мощность постепенно наращивали, и уже в 1963 году ее показатель составил 600 МВт. После второго капитального ремонта была полностью решена проблема с вкладышами, а мощность уже составила 1200 МВт с ежегодным производством плутония 270 килограмм. Эти показатели сохранились до полного закрытия реакторов.

Реактор АИ-ИР

Челябинское предприятие использовало данную установку в период с 22 декабря 1951 года до 25 мая 1987 года. Помимо урана, реактор также производил кобальт-60 и полоний-210. Изначально на объекте производили тритий, но позже начали получать и плутоний.

Также завод по переработке оружейного плутония имел в строю реакторы, работающие на тяжелой воде и единственный легководный реактор (имя его – «Руслан»).

Сибирский гигант

"Томск-7" – именно такое название носил завод, на котором расположились пять реакторов для создания плутония. Каждый из агрегатов применял графит с целью замедлить нейтроны и обычную воду для обеспечения надлежащего охлаждения.

Реактор И-1 работал с системой охлаждения, в которой вода проходила единожды. Однако остальные четыре установки были снабжены замкнутыми первичными контурами, оборудованными теплообменниками. Такая конструкция позволяла дополнительно вырабатывать еще и пар, который в свою очередь помогал в производстве электричества и обогрева различных жилых помещений.

"Томск-7" имел также и реактор под названием ЭИ-2, который, в свою очередь, имел двойное назначение: производил плутоний и за счет вырабатываемого пара генерировал 100 МВт электроэнергии, а также 200 МВт тепловой энергии.

Важная информация

По заверениям ученых, полураспад оружейного плутония составляет порядка 24 360 лет. Огромная цифра! В связи с этим особо острым становится вопрос: «Как же правильно обойтись с отходами производства данного элемента?» Наиболее оптимальным вариантом считается постройка специальных предприятий для последующей переработки оружейного плутония. Объясняется это тем, что в таком случае элемент уже нельзя будет использовать в военных целях и будет подконтролен человеку. Именно так проводится утилизация оружейного плутония в России, однако Соединенные Штаты Америки пошли другим путем, нарушив тем самым свои международные обязательства.

Так, американское правительство предлагает уничтожать высокообогащенное ядерное топливо не промышленным способом, а путем разбавления плутония и хранения его в специальных емкостях на глубине равной 500 метрам. Само собой, что в таком случае материал легко можно будет в любой момент извлечь из земли и вновь пустить его на военные цели. Как утверждает президент РФ Владимир Путин, изначально страны договаривались уничтожать плутоний не таким методом, а проводить утилизацию на промышленных объектах.

Отдельного внимания заслуживает стоимость оружейного плутония. По оценкам экспертов, десятки тонн этого элемента вполне могут стоить несколько миллиардов американских долларов. А некоторые специалисты ми вовсе оценили 500 тонн оружейного плутония аж в 8 триллионов долларов. Сумма реально впечатляющая. Чтобы было понятнее, насколько это большие деньги, скажем, что в последние десять лет 20 века среднегодовой показатель ВВП России составлял 400 миллиардов долларов. То есть, по сути, реальная цена оружейного плутония равнялась двадцати годовым ВВП Российской Федерации.

fb.ru

Плутоний: проблема получения

 

Плутоний: проблема получения

Александров А.П.

Химически плутоний и уран отличаются сильно, но худо было то, что все процедуры разделения нужно было делать дистанционным образом. Аппараты, которые могли за этим следить еще и разработаны не были по настоящему, так что все было очень сложно. И нужно было получить плутоний очень чистый с очень малым количеством остаточной радиоактивности осколочной. Это было важно, чтобы не было чересчур большого нейтронного фона у этого плутония. Но он, в общем, настолько был хорош, что я например совершенно спокойно мог держать половинку в руке.

Завод химической переработки приводил к тому, что получался плутоний в виде соли, и эта соль передавалась на другой завод, который уже должен был сделать половинки изделия ( бомбы ).

На этом заводе происходило восстановление соли плутония до металла, раз. Во-вторых из металлических кусочков путем прессования при повышенной температуре получалась нужная форма, причем она должна была получаться с высочайшей точностью. Проверка велась по числу интерференционных полос.

От американцев было известно, что они делали на плутонии бомбу. Но какие сечения, что и как - это было ничего не известно. Но велись детальные наблюдения над изменением реактивности в первом реакторе и вот в этом экспериментальном реакторе, который у нас в институте атомной энергии. Велись измерения изменения реактивности во времени по мере накопления там плутония вместо выгоревшего урана 235. Это трудно, но это можно. Причем это эффект довольно существенный. И вот этим образом можно было сопоставить критические массы урана 235-го и плутония 239-го. И все остальное довольно хорошо там сокращалось, и оставалось такое чистое отношение критических масс. Вот это было собственно решающим обстоятельством. И то что был все время рост реактивности, это было конечно очень такое важное и тонкое наблюдение.

Плутоний американцами был открыт, у нас то его не было. У нас его получили ничтожное количество ускорительной техникой, но это были сотни атомов, или там тысячи атомов, на этом сделать ничего нельзя было. После первого реактора , который разрабатывали Игорь Васильевич с Доллежалем, мы разработали второй проект в 3-4 раза большей мощности, после этого было решено их построить серию. И у нас каждый год входило по крайней мере по одному реактору в дело. Примерно 100 тыс. киловатт тепловой мощности приводит к получению около 40 килограмм плутония в год.

Те, которыми я занимался, они давали 100-120 килограмм. А вот эти скажем 120 кг - это было два десятка бомб, таких как были в Хиросиме. Вот такого порядка. Так что отсюда можно себе составить представление, какой сразу масштаб производства в нашей стране был. И именно смысл то был в том, что у нас гораздо быстрее развернули производство серьезного масштаба, чем успели развернуть американцы.

В США 

Идентификации плутония осуществлена в Беркли в феврале 1941 г. Гленом Сиборгом и его сотрудниками. Реакторы-производители плутония были построены в Хэнфорде (штат Вашингтон), где также был запущен химический завод для выделения плутония из облученного урана.

Ссылки:1. Завод N 12 (Ногинск, Электросталь)2. ПЛУТОНИЙ3. Хлопин Виталий Григорьевич (1890-1950)

 

 

 

 

 

 

 

 

 

 

www.famhist.ru

Плутоний химический элемент

Плутоний Pu - элемент № 94 связаны очень большие надежды и очень большие опасения человечества. В наши дни это один из самых важных, стратегически важных, элементов. Это самый дорогой из технически важных металлов — он намного дороже серебра, золота и платины. Он поистине драгоценен.

Предыстория и история

...Вначале были протоны — галактический водород. В результате его сжатия и последовавших затем ядерных реакций образовались самые невероятные «слитки» нуклонов. Среди них, этих «слитков», были, по-видимому, и содержащие по 94 протона. Оценки теоретиков позволяют считать, что около 100 нуклонных образований, в состав которых входят 94 протона и от 107 до 206 нейтронов, настолько стабильны, что их можно считать ядрами изотопов элемента № 94.Но все эти изотопы — гипотетические и реальные — не настолько стабильны, чтобы сохраниться до наших дней с момента образования элементов солнечной системы. Период полураспада самого долгоживущего изотопа элемента №94 — 81 млн. лет. Возраст Галактики измеряется миллиардами лет. Следовательно, у «первородного» плутония не было шансов дожить до наших дней. Если он и образовывался при великом синтезе элементов Вселенной, то те давние его атомы давно «вымерли», подобно тому как вымерли динозавры и мамонты.В XX в. новой эры, нашей эры, этот элемент был воссоздан. Из 100 возможных изотопов плутония синтезированы 25. У 15 из них изучены ядерные свойства. Четыре нашли практическое применение. А открыли его совсем недавно. В декабре 1940 г. при облучении урана ядрами тяжелого водорода группа американских радиохимиков во главе с Гленном Т. Сиборгом обнаружила неизвестный прежде излучатель альфа-частиц с периодом полураспада 90 лет. Этим излучателем оказался изотоп элемента № 94 с массовым числом 238. В том же году, но несколькими месяцами раньше Э.М. Макмиллан и Ф. Эйбельсон получили первый элемент, более тяжелый, чем уран, — элемент № 93. Этот элемент назвали нептунием, а 94-й — плутонием. Историк определенно скажет, что названия эти берут начало в римской мифологии, но в сущности происхождение этих названий скорее не мифологическое, а астрономическое.Элементы № 92 и 93 названы в честь далеких планет солнечной системы — Урана и Нептуна, но и Нептун в солнечной системе — не последний, еще дальше пролегает орбита Плутона — планеты, о которой до сих пор почти ничего не известно... Подобное же построение наблюдаем и на «левом фланге» менделеевской таблицы: uranium — neptunium — plutonium, однако о плутонии человечество знает намного больше, чем о Плутоне. Кстати, Плутон астрономы открыли всего за десять лет до синтеза плутония — почти такой же отрезок времени разделял открытия Урана — планеты и урана — элемента.

Загадки для шифровальщиков

Первый изотоп элемента № 94 — плутоний-238 в наши дни нашел практическое применение. Но в начале 40-х годов об этом и не думали. Получать плутоний-238 в количествах, представляющих практический интерес, можно, только опираясь на мощную ядерную промышленность. В то время она лишь зарождалась. Но уже было ясно, что, освободив энергию, заключенную в ядрах тяжелых радиоактивных элементов, можно получить оружие невиданной прежде силы. Появился Манхэттенский проект, не имевший ничего, кроме названия, общего с известным районом Нью-Йорка. Это было общее название всех работ, связанных с созданием в США первых атомных бомб. Руководителем Манхэттенского проекта был назначен не ученый, а военный — генерал Гровс, «ласково» величавший своих высокообразованных подопечных «битыми горшками».Руководителей «проекта» плутоний-238 не интересовал. Его ядра, как, впрочем, ядра всех изотопов плутония с четными массовыми числами, нейтронами низких энергий не делятся, поэтому он не мог служить ядерной взрывчаткой. Тем не менее первые не очень внятные сообщения об элементах № 93 и 94 попали в печать лишь весной 1942 г.Чем это объяснить? Физики понимали: синтез изотопов плутония с нечетными массовыми числами — дело времени, и недалекого. От нечетных изотопов ждали, что, подобно урану-235, они смогут поддерживать цепную ядерную реакцию. В них, еще не полученных, кое-кому виделась потенциальная ядерная взрывчатка. И эти надежды плутоний, к сожалению, оправдывал.В шифровках того времени элемент № 94 именовался не иначе, как... медью. А когда возникла необходимость в самой меди (как конструкционном материале для каких-то деталей), то в шифровках наряду с «медью» появилась «подлинная медь».

«Древо познания добра и зла»

В 1941 г. был открыт важнейший изотоп плутония — изотоп с массовым числом 239. И почти сразу же подтвердилось предсказание теоретиков: ядра плутония-239 делились тепловыми нейтронами. Более того, в процессе их деления рождалось не меньшее число нейтронов, чем при делении урана-235. Тотчас же были намечены пути получения этого изотопа в больших количествах...Прошли годы. Теперь уже ни для кого не секрет, что ядерные бомбы, хранящиеся в арсеналах, начинены плутонием-239 и что их, этих бомб, достаточно, чтобы нанести непоправимый ущерб всему живому на Земле.Распространено мнение, что с открытием цепной ядерной реакции (неизбежным следствием которого стало создание ядерной бомбы) человечество явно поторопилось. Можно думать по-другому или делать вид, что думаешь по-другому, — приятнее быть оптимистом. Но и перед оптимистами неизбежно встает вопрос об ответственности ученых. Мы помним триумфальный июньский день 1954 г., день, когда дала ток первая атомная электростанция в Обнинске. Но мы не можем забыть и августовское утро 1945 г. — «утро Хиросимы», «черный день Альберта Эйнштейна»... Помним первые послевоенные годы и безудержный атомный шантаж — основу американской политики тех лет. А разве мало тревог пережило человечество в последующие годы? Причем эти тревоги многократно усиливались сознанием, что, если вспыхнет новая мировая война, ядерное оружие будет пущено в ход.Здесь можно попробовать доказать, что открытие плутония не прибавило человечеству опасений, что, напротив, оно было только полезно.Допустим, случилось так, что по какой-то причине или, как сказали бы в старину, по воле божьей, плутоний оказался недоступен ученым. Разве уменьшились бы тогда наши страхи и опасения? Ничуть не бывало. Ядерные бомбы делали бы из урана-235 (и в не меньшем количестве, чем из плутония), и эти бомбы «съедали» бы еще большие, чем сейчас, части бюджетов.Зато без плутония не существовало бы перспективы мирного использования ядерной энергии и больших масштабах. Для «мирного атома» просто не хватило бы урана-235. Зло, нанесенное человечеству открытием ядерной энергии, не уравновешивалось бы, пусть даже частично, достижениями «доброго атома».

Как измерить, с чем сравнить

Когда ядро плутония-239 делится нейтронами на два осколка примерно равной массы, выделяется около 200 Мэв энергии. Это в 50 млн. раз больше энергии, освобождающейся в самой известной экзотермической реакции С + O2 = СO2. «Сгорая» в ядерном реакторе, грамм плутония дает 2107 ккал. Чтобы не нарушать традиции (а в популярных статьях энергию ядерного горючего принято измерять внесистемными единицами — тоннами угля, бензина, тринитротолуола и т. д.), заметим и мы: это энергия, заключенная в 4 т угля. А в обычный наперсток помещается количество плутония, энергетически эквивалентное сорока вагонам хороших березовых дров.Такая же энергия выделяется и при делении нейтронами ядер урана-235. Но основную массу природного урана (99,3%!) составляет изотоп 238U, который можно использовать, только превратив уран в плутоний...

Энергия камней

Оценим энергетические ресурсы, заключенные в природных запасах урана.Уран — рассеянный элемент, и практически он есть всюду. Каждому, кто побывал, к примеру, в Карелии, наверняка запомнились гранитные валуны и прибрежные скалы. Но мало кто знает, что в тонне гранита до 25 г урана. Граниты составляют почти 20% веса земной коры. Если считать только уран-235, то в тонне гранита заключено 3,5-105 ккал энергии. Это очень много, но...На переработку гранита и извлечение из него урана нужно затратить еще большее количество энергии — порядка 106—107 ккал/т. Вот если бы удалось в качестве источника энергии использовать не тол ко уран-235, а и уран-238, тогда гранит можно было бы рассматривать хотя бы как потенциальное энергетическое сырье. Тогда энергия, полученная из тонны камня, составила бы уже от 8-107 до 5-108 ккал. Это равноценно 16-100 т угля. И в этом случае гранит мог бы дать людям почти в миллион раз больше энергии, чем все запасы химического топлива на Земле.Но ядра урана-238 нейтронами не делятся. Для атомной энергетики этот изотоп бесполезен. Точнее, был бы бесполезен, если бы его не удалось превратить в плутоний-239. И что особенно важно: на это ядерное превращение практически не нужно тратить энергию — напротив, в этом процессе энергия производится!Попробуем разобраться, как это происходит, но вначале несколько слов о природном плутонии.

В 400 тысяч раз меньше, чем радия

Уже говорилось, что изотопы плутония не сохранились со времени синтеза элементов при образовании нашей планеты. Но это не означает, что плутония в Земле нет.Он все время образуется в урановых рудах. Захватывая нейтроны космического излучения и нейтроны, образующиеся при самопроизвольном (спонтанном) делении ядер урана-238, некоторые — очень немногие — атомы этого изотопа превращаются в атомы урана-239. Эти ядра очень нестабильны, они испускают электроны и тем самым повышают свой заряд. Образуется нептуний — первый трансурановый элемент. Нептуний-239 тоже весьма неустойчив, и его ядра испускают электроны. Всего за 56 часов половина нептуния-239 превращается в плутоний-239, период полураспада которого уже достаточно велик — 24 тыс. лет.Почему не добывают плутоний из урановых руд? Мала, слишком мала концентрация. «В грамм добыча — в год труды» — это о радии, а плутония в рудах содержится в 400 тыс. раз меньше, чем радия. Поэтому не только добыть — даже обнаружить «земной» плутоний необыкновенно трудно. Сделать это удалось только после того, как были изучены физические и химические свойства плутония, полученного в атомных реакторах.Накапливают плутоний в ядерных реакторах. В мощных потоках нейтронов происходит та же реакция, что и в урановых рудах, но скорость образования и накопления плутония в реакторе намного выше — в миллиард миллиардов раз. Для реакции превращения балластного урана-238 в энергетический плутоний-239 создаются оптимальные (в пределах допустимого) условия.Если реактор работает на тепловых нейтронах (напомним, что их скорость — порядка 2000 м в секунду, а энергия — доли электронвольта), то из естественной смеси изотопов урана получают количество плутония, немногим меньшее, чем количество «выгоревшего» урана-235. Немногим, но меньшее, плюс неизбежные потери плутония при химическом выделении его из облученного урана. К тому же цепная ядерная реакция подцеживается в природной смеси изотопов урана только до тех пор, пока не израсходована незначительная доля урана-235. Отсюда закономерен вывод: «тепловой» реактор на естественном уране — основной тип ныне действующих реакторов — не может обеспечить расширенного воспроизводства ядерного горючего. Но что же тогда перспективно? Для ответа на этот вопрос сравним ход цепной ядерной реакции в уране-235 и плутонии-239 и введем в наши рассуждения еще одно физическое понятие.Важнейшая характеристика любого ядерного горючего — среднее число нейтронов, испускаемых после того, как ядро захватило один нейтрон. Физики называют его эта-числом и обозначают греческой буквой ц. В «тепловых» реакторах на уране наблюдается такая закономерность: каждый нейтрон порождает в среднем 2,08 нейтрона (η=2,08). Помещенный в такой реактор плутоний под действием тепловых нейтронов дает η=2,03. Но есть еще реакторы, работающие на быстрых нейтронах. Естественную смесь изотопов урана в такой реактор загружать бесполезно: цепная реакция не пойдет. Но если обогатить «сырье» ураном-235, она сможет развиваться и в «быстром» реакторе. При этом ц будет равно уже 2,23. А плутоний, помещенный под обстрел быстрыми нейтронами, даст η равное 2,70. В наше распоряжение поступит «лишних полнейтрона». И это совсем не мало.

Проследим, на что тратятся полученные нейтроны. В любом реакторе один нейтрон нужен для поддержания цепной ядерной реакции. 0,1 нейтрона поглощается конструкционными материалами установки. «Избыток» идет на накопление плутония-239. В одном случае «избыток» равен 1,13, в другом — 1,60. После «сгорания» килограмма плутония в «быстром» реакторе выделяется колоссальная энергия и накапливается 1,6 кг плутония. А уран и в «быстром» реакторе даст туже энергию и 1,1 кг нового ядерного горючего. И в том и в другом случае налицо расширенное воспроизводство. Но нельзя забывать об экономике. В силу ряда технических причин цикл воспроизводства плутония занимает несколько лет. Допустим, что пять лет. Значит, в год количество плутония увеличится только на 2%, если η=2,23, и на 12%, если η=2,7! Ядерное горючее — капитал, а всякий капитал должен давать, скажем, 5% годовых. В первом случае налицо большие убытки, а во втором — большая прибыль. Этот примитивный пример иллюстрирует «вес» каждой десятой числа в ядерной энергетике. Важно и другое. Ядерная энергетика должна поспевать за ростом потребности в энергии. Расчеты показывают: его условие выполнимо в будущем только тогда, когда η приближается к трем. Если же развитие ядерных энергетических источников будет отставать от потребностей общества в энергии, то останется два пути: либо «затормозить прогресс», либо брать энергию из каких-то других источников. Они известны: термоядерный синтез, энергия аннигиляции вещества и антивещества, но пока еще технически недоступны. И не известно, когда они будут реальными источниками энергии для человечества. А энергия тяжелых ядер уже давно стала для нас реальностью, и сегодня у плутония как главного «поставщика» энергии атома нет серьезных конкурентов, кроме, может быть, урана-233.

Сумма многих технологий

Когда в результате ядерных реакций в уране накопится необходимое количество плутония, его необходимо отделить не только от самого урана, но и от осколков деления — как урана, так и плутония, выгоревших в цепной ядерной реакции. Кроме того, в урано-плутониевой массе есть и некоторое количество нептуния. Сложнее всего отделить плутоний от нептуния и редкоземельных элементов (лантаноидов). Плутонию как химическому элементу в какой-то мере не повезло. С точки зрения химика, главный элемент ядерной энергетики — всего лишь один из четырнадцати актиноидов. Подобно редкоземельным элементам, все элементы актиниевого ряда очень близки между собой по химическим свойствам, строение внешних электронных оболочек атомов всех элементов от актиния до 103-го одинаково. Еще неприятнее, что химические свойства актиноидов подобны свойствам редкоземельных элементов, а среди осколков деления урана и плутония лантаноидов хоть отбавляй. Но зато 94-й элемент может находиться в пяти валентных состояниях, и это «подслащивает пилюлю» — помогает отделить плутоний и от урана, и от осколков деления.Валентность плутония меняется от трех до семи. Химически наиболее стабильны (а следовательно, наиболее распространены и наиболее изучены) соединения четырехвалентного плутония.Разделение близких по химическим свойствам актиноидов — урана, нептуния и плутония — может быть основано на разнице в свойствах их четырех- и шестивалентных соединений.

Нет нужды подробно описывать все стадии химического разделения плутония и урана. Обычно разделение их начинают с растворения урановых брусков в азотной кислоте, после чего содержащиеся в растворе уран, нептуний, плутоний и осколочные элементы «разлучают», применяя для этого уже традиционные радиохимические методы — осаждение, экстракцию, ионный обмен и другие. Конечные плутонийсодержащие продукты этой многостадийной технологии — его двуокись PuO2 или фториды — PuF3 или PuF4. Их восстанавливают до металла парами бария, кальция или лития. Однако полученный в этих процессах плутоний не годится на роль конструкционного материала — тепловыделяющих элементов энергетических ядерных реакторов из него не сделать, заряда атомной бомбы не отлить. Почему? Температура плавления плутония — всего 640°С — вполне достижима. При каких бы «ультращадящих» режимах ни отливали детали из чистого плутония, в отливках при затвердевании всегда появятся трещины. При 640°С твердеющий плутоний образует кубическую кристаллическую решетку. По мере уменьшения температуры плотность металла постепенно растет. Но вот температура достигла 480°С, и тут неожиданно плотность плутония резко падает. До причин этой аномалии докопались довольно быстро: при этой температуре атомы плутония перестраиваются в кристаллической решетке. Она становится тетрагональной и очень «рыхлой». Такой плутоний может плавать в собственном расплаве, как лед на воде. Температура продолжает падать, вот она достигла 451°С, и атомы снова образовали кубическую решетку, но расположились на большем, чем в первом случае, расстоянии друг от друга. При дальнейшем охлаждении решетка становится сначала орторомбической, затем моноклинной. Всего плутоний образует шесть различных кристаллических форм! Две из них отличаются замечательным свойством — отрицательным коэффициентом температурного расширения: с ростом температуры металл не расширяется, а сжимается. Когда температура достигает 122°С и атомы плутония в шестой раз перестраивают свои ряды, плотность меняется особенно сильно — от 17,77 до 19,82 г/см3. Больше, чем на 10%! Соответственно уменьшается объем слитка. Если против напряжений, возникавших на других переходах, металл еще мог устоять, то в этот момент разрушение неизбежно. Как же тогда изготовить детали из этого удивительного металла? Металлурги легируют плутоний (добавляют в него незначительные количества нужных элементов) и получают отливки без единой трещины. Из них и делают плутониевые заряды ядерных бомб. Вес заряда (он определяется прежде всего критической массой изотопа) 5-6 кг. Он без труда поместился бы в кубике с размером ребра 10 см.

Тяжелые изотопы плутония

В плутонии-239 в незначительном количестве содержатся и высшие изотопы этого элемента — с массовыми числами 240 и 241. Изотоп 240Pu практически бесполезен — это балласт в плутонии. Из 241-го получают америций — элемент № 95. В чистом виде, без примеси других изотопов, плутоний-240 и плутоний-241 можно получить при электромагнитном разделении плутония, накопленного в реакторе. Перед этим плутоний дополнительно облучают нейтронными потоками со строго определенными характеристиками. Конечно, все это очень сложно, тем более что плутоний не только радиоактивен, но и весьма токсичен. Работа с ним требует исключительной осторожности.Один из самых интересных изотопов плутония — 242Pu можно получить, облучая длительное время 239Pu в потоках нейтронов. 242Pu очень редко захватывает нейтроны и потому «выгорает» в реакторе медленнее остальных изотопов; он сохраняется и после того, как остальные изотопы плутония почти полностью перешли в осколки или превратились в плутоний-242.Плутоний-242 важен как «сырье» для сравнительно быстрого накопления высших трансурановых элементов в ядерных реакторах. Если в обычном реакторе облучать плутоний-239, то на накопление из граммов плутония микрограммовых количеств, к примеру, калифорния-252 потребуется около 20 лет.Можно сократить время накопления высших изотопов, увеличив интенсивность потока нейтронов в реакторе. Так и делают, но тогда нельзя облучать большое количество плутония-239. Ведь этот изотоп делится нейтронами, и в интенсивных потоках выделяется слишком много энергии. Возникают дополнительные сложности с охлаждением реактора. Чтобы избежать этих сложностей, пришлось бы уменьшить количество облучаемого плутония. Следовательно, выход калифорния стал бы снова мизерным. Замкнутый круг!Плутоний-242 тепловыми нейтронами не делится, его и в больших количествах можно облучать в интенсивных нейтронных потоках... Поэтому в реакторах из этого изотопа «делают» и накапливают в весовых количествах все элементы от америция до фермия.Всякий раз, когда ученым удавалось получить новый изотоп плутония, измеряли период полураспада его ядер. Периоды полураспада изотопов тяжелых радиоактивных ядер с четными массовыми числами меняются закономерно. (Этого нельзя сказать о нечетных изотопах.)С увеличением массы растет и «время жизни» изотопа. Несколько лет назад высшей точкой этого графика был плутоний-242. А дальше как пойдет эта кривая — с дальнейшим ростом массового числа? В точку 1, которая соответствует времени жизни 30 млн. лет, или в точку 2, которая отвечает уже 300 млн. лет? Ответ на этот вопрос был очень важен для наук о Земле. В первом случае, если бы 5 млрд, лет назад Земля целиком состояла из 244Pu, сейчас во всей массе Земли остался бы только один атом плутония-244. Если же верно второе предположение, то плутоний-244 может быть в Земле в таких концентрациях, которые уже можно было бы обнаружить. Если бы посчастливилось найти в Земле этот изотоп, наука получила бы ценнейшую информацию о процессах, происходивших при формировании нашей планеты.

 

Периоды полураспада некоторых изотопов плутония

 

Несколько лет назад перед учеными встал вопрос: стоит ли пытаться найти тяжелый плутоний в Земле? Для ответа на него нужно было прежде всего определить период полураспада плутония-244. Теоретики не могли рассчитать эту величину с нужной точностью. Вся надежда была только на эксперимент.Плутоний-244 накопили в ядерном реакторе. Облучали элемент № 95 — америций (изотоп 243Am). Захватив нейтрон, этот изотоп переходил в америций-244; америций- 244 в одном из 10 тыс. случаев переходил в плутоний-244.Из смеси америция с кюрием выделили препарат плутония-244. Образец весил всего несколько миллионных долей грамма. Но их хватило для того чтобы определить период полураспада этого интереснейшего изотопа. Он оказался равным 75 млн. лет. Позже другие исследователи уточнили период полураспада плутония-244, но ненамного — 81 млн. лет. В 1971 г. следы этого изотопа нашли в редкоземельном минерале бастнезите.Много попыток предпринимали ученые, чтобы найти изотоп трансуранового элемента, живущий дольше, чем 244Pu. Но все попытки остались тщетными. Одно время возлагали надежды на кюрий-247, но после того, как этот изотоп был накоплен в реакторе, выяснилось, что его период полураспада всего 16 млн. лет. Побить рекорд плутония-244 не удалось, — это самый долгоживущий из всех изотопов трансурановых элементов.Еще более тяжелые изотопы плутония подвержены бета-распаду, и их время жизни лежит в интервале от нескольких дней до нескольких десятых секунды. Мы знаем наверное, что в термоядерных взрывах образуются все изотопы плутония, вплоть до 257Pu. Но их время жизни — десятые доли секунды, и изучить многие короткоживущие изотопы плутония пока не удалось.

Возможности первого изотопа плутония

И напоследок — о плутонии-238 — самом первом из «рукотворных» изотопов плутония, изотопе, который вначале казался бесперспективным. В действительности это очень интересный изотоп. Он подвержен альфа-распаду, т. е. его ядра самопроизвольно испускают альфа-частицы — ядра гелия. Альфа-частицы, порожденные ядрами плутония-238, несут большую энергию; рассеявшись в веществе, эта энергия превращается в тепло. Как велика эта энергия? Шесть миллионов электронвольт освобождается при распаде одного атомного ядра плутония-238. В химической реакции та же энергия выделяется при окислении нескольких миллионов атомов. В источнике электричества, содержащем один килограмм плутония-238, развивается тепловая мощность 560 ватт. Максимальная мощность такого же по массе химического источника тока — 5 ватт.Существует немало излучателей с подобными энергетическими характеристиками, но одна особенность плутония-238 делает этот изотоп незаменимым. Обычно альфа- распад сопровождается сильным гамма-излучением, проникающим через большие толщи вещества. 238Pu — исключение. Энергия гамма-квантов, сопровождающих распад его ядер, невелика, защититься от нее несложно: излучение поглощается тонкостенным контейнером. Мала и вероятность самопроизвольного деления ядер этого изотопа. Поэтому он нашел применение не только в источниках тока, но и в медицине. Батарейки с плутонием-238 служат источником энергии в специальных стимуляторах сердечной деятельности.Но 238Pu не самый легкий из известных изотопов элемента № 94, получены изотопы плутония с массовыми числами от 232 до 237. Период полураспада самого легкого изотопа — 36 минут.

Плутоний — большая тема. Здесь рассказано главное из самого главного. Ведь уже стала стандартной фраза, что химия плутония изучена гораздо лучше, чем химия таких «старых» элементов, как железо. О ядерных свойствах плутония написаны целые книги. Металлургия плутония — еще один удивительный раздел человеческих знаний... Поэтому не нужно думать, что, прочитав этот рассказ, вы по-настоящему узнали плутоний — важнейший металл XX в.

  • КАК ВОЗЯТ ПЛУТОНИЙ. Радиоактивный и токсичный плутоний требует особой осторожности при перевозке. Сконструирован контейнер специально для его транспортировки — контейнер, который не разрушается даже при авиационных катастрофах. Сделан он довольно просто: это толстостенный сосуд из нержавеющей стали, окруженный оболочкой из красного дерева. Очевидно, плутоний того стоит, но прпредставьте, какой толщины должны быть стенки, если известно, что контейнер для перевозки всего двух килограммов плутония весит 225 кг!
  • ЯД И ПРОТИВОЯДИЕ. 20 октября 1977 г. агентство «Франс Пресс» сообщило: найдено химическое соединение, способное выводить из организма человека плутоний. Через несколько лет об этом соединении стало известно довольно многое. Это комплексное соединение — линейный катехинамид карбоксилазы, вещество класса хелатов (от греческого — «хела» — клешня). В эту химическую клешню и захватывается атом плутония, свободный или связанный. У лабораторных мышей с помощью этого вещества из организма выводили до 70% поглощенного плутония. Полагают, что в дальнейшем это соединение поможет извлекать плутоний и из отходов производства, и из ядерного горючего.

natural-museum.ru

Производство оружейного плутония.

    Преобразование одних атомов в другие происходит при взаимодействии атомных или субатомных частиц. Из таковых доступны в больших количествах только нейтроны. Гигаваттный ядерный реактор производит около 3.75 кг (или 4*1030) нейтронов в течении года.

Производство плутония

    Атомы плутония образуются в результате цепи атомных реакций, начинающихся с захвата нейтрона атомом урана-238: U238 + n -> U239 -> Np239 -> Pu239или, более точно: 0n1 + 92U238 -> 92U239 -> -1e0 + 93Np239 -> -1e0 + 94Pu239При продолжении облучения некоторые атомы плутония-239 способны в свою очередь захватить нейтрон и превратиться в более тяжелый изотоп плутоний-240: Pu239 + n -> Pu240     Чтобы получать плутоний в достаточном количестве, нужны сильнейшие нейтронные потоки. Такие как раз создаются в атомных реакторах. В принципе, любой реактор является источником нейтронов, но для промышленного производства плутония естественно использовать специально разработанный для этого.     Самый первый в мире промышленный реактор по производству плутония - B-реактор в Хэнфорде. Заработал 26 сентября 1944, мощность - 250 МВт, производительность - 6 кг плутония в месяц. Он содержал около 200 тонн металлического урана, 1200 тонн графита и охлаждался водой со скоростью 5 кубометров/мин. Панель загрузки хэнфордского реактора кассетами с ураном:     Схема его работы. В реакторе для облучения урана-238 создаются нейтроны в результате стационарной цепной реакции деления ядер урана-235. В среднем на одно деление U-235 возникает 2.5 нейтрона. Для поддержания реакции и одновременной наработки плутония необходимо, чтобы в среднем один или два нейтрона поглотились бы U-238, а один вызвал бы деление следующего атома U-235.     Нейтроны, возникающие при делении урана обладают очень большими скоростями. Атомы урана устроены таким образом, что захват быстрых нейтронов ядрами и U-238 и U-235 маловероятен. Поэтому быстрые нейтроны испытав несколько соударений с окружающими атомами постепенно замедляются. При этом ядра U-238 так сильно поглощают такие нейтроны (промежуточных скоростей), что ничего не остается для деления U-235 и поддержания цепной реакции (U-235 делится от медленных, тепловых нейтронов).     С этим борется замедлитель, окружающее блоки с ураном какое-нибудь легкое вещество. В нем нейтроны тормозятся без поглощения, испытывая упругие столкновения, в каждом из которых теряется малая часть энергии. Хорошими замедлителями являются вода, углерод. Таким образом, замедленные до тепловых скоростей нейтроны путешествуют по реактору, пока не вызовут деление U-235 (U-238 поглощает их очень слабо). При определенной конфигурации замедлителя и урановых стержней создадутся условия для поглощения нейтронов и U-238 и U-235.     Изотопный состав получаемого плутония зависит от длительности нахождения в реакторе урановых стержней. Значительное накопление Pu-240 происходит в результате длительного облучения кассеты с ураном. При маленьком времени нахождения урана в реакторе получается Pu-239 с незначительным содержанием Pu-240.     Pu-240 вреден для производства оружия по следующим причинам: 1. Он менее делящийся материал, чем Pu-239, поэтому требуется чуть большее количество плутония для изготовления оружия. 2. Вторая, гораздо более важная причина. Уровень спонтанного деления у Pu-240 гораздо выше, что создает сильный нейтронный фон.     В самые первые годы разработки атомного оружия испускание нейтронов (сильный нейтронный фон) было проблемой на пути к надежному и эффективному заряду из-за преждевременной его детонации. Сильные потоки нейтронов делали сложным или невозможным сжатие ядра бомбы, содержащего несколько килограммов плутония, в надкритичное состояние - до этого оно разрушалось сильнейшим, но все-таки не максимально возможным энерговыходом. Приход смешанных ядер - содержащих высокообогащенный U-235 и плутоний (в конце 1940-х) - преодолел это затруднение, когда стало возможным применять относительно маленькое количество плутония в по большей части урановых ядрах. Следующее поколение зарядов - устройства с усилением за счет синтеза (в середине 1950-х) полностью исключили это затруднение, гарантируя высокое выделение энергии, даже при маломощных начальных зарядах деления.     Плутоний, производящийся в специальных реакторах, содержит относительно небольшой процент Pu-240 (<7%), плутоний "оружейного качества"; в реакторах АЭС отработанное ядерное топливо имеет концентрацию Pu-240 более 20%, плутоний "реакторного качества".     В реакторах специального назначения уран находится относительно небольшой промежуток времени, в течении которого выгорает не весь U-235 и не весь U-238 переходит в плутоний, зато образуется и меньшее количество Pu-240.     Имеются две причины для производства плутония с низким содержанием Pu-240: Экономическая: единственная причина существования плутониевых спецреакторов. Распад плутония в результате деления или превращение его в менее делящийся Pu-240 уменьшают отдачу и увеличивают стоимость производства (вплоть до точки, где его цена будет балансировать с ценой обработки облученного топлива с маленькой концентрацией плутония). Сложность обращения: хотя испускание нейтронов не является такой уж серьезной проблемой для конструкторов оружия, оно может создать сложности в производстве и с обращением с таким зарядом. Нейтроны создают дополнительный вклад в профессиональное облучение тех, кто собирает или обслуживает оружие (сами нейтроны не обладают ионизирующем действием, но они создают протоны, способные на это). В действительности заряды, предполагающие непосредственный контакт с людьми, например Davy Crocket, могут потребовать по этой причине сверхчистого плутония с низким уровнем испускания нейтронов.      Непосредственная отливка и обработка плутония выполняется вручную в герметичных камерах с перчатками для оператора. Вроде таких: Это подразумевает совсем небольшую защиту человека от испускающего нейтроны плутония. Поэтому плутоний с большим содержанием Pu-240 обрабатывается только манипуляторами либо жестко ограничивается время работы с ним каждого работника.     По всем этим причинам (радиоактивность, худшие свойства Pu-240) объясняется, почему плутоний реакторного качества не применяется для изготовления оружия - дешевле нарабатывать оружейный плутоний в спец. реакторах. Хотя и из реакторного тоже, по всей видимости, можно изготовить ядерное взрывное устройство.

Плутониевое кольцо

    Это кольцо из электролитически очищенного металлического плутония (чистота более 99.96%). Типичное из колец, подготавливаемых в Лос-Аламосе и отправляемых в Роки Флетс для изготовления оружия, до недавнего приостановления его производства. Масса кольца 5.3 кг, достаточная для изготовления современного стратегического заряда, диаметр - примерно 11 см. Кольцевая форма важна для обеспечения критической безопасности.     Отливка из плутониево-галлиевого сплава, рекуперированного из оружейного ядра:

Плутоний во время Манхэттенского проекта

    Исторически первые 520 миллиграмм металлического плутония, произведенные Тедом Мейджелом (Ted Magel) и Ником Далласом (Nick Dallas) в Лос-Аламосе 23 марта 1944:     Пресс для горячего прессования плутониево-галлиевого сплава в виде полусфер. Этот пресс использовался в Лос-Аламосе для изготовления плутониевых ядер для зарядов, взорванных в Нагасаки и в операции Тринити.     Отлитые на нем изделия:

Дополнительные побочные изотопы плутония

    Захват нейтрона не сопровождающийся при этом актом деления создает новые изотопы плутония: Pu-240, Pu-241 и Pu-242. Последнии два накапливаются в незначительных количествах. Pu239 + n -> Pu240Pu240 + n -> Pu241Pu241 + n -> Pu242Возможна и побочная цепочка реакций: U238 + n -> U237 + 2n U237 -> (6.75 дней, бета-распад) -> Np237Np237 + n -> Np238Np238 -> (2.1 дня, бета-распад) -> Pu238Общую меру облученности (отработанности) топливного элемента можно выразить в мегаватт-днях/тонну (МВт-день/т). Плутоний оружейного качества получается из элементов, с небольшим количеством МВт-день/т, в нем образуется меньше побочных изотопов. Топливные элементы в современных водо-водяных реакторах достигают уровня в 33 000 МВт-день/т. Типичная экспозиция в оружейном бридерном (с расширенным воспроизводством ядерного горючего) реакторе 1000 МВт-день/т. Плутоний в Хэнфордских реакторах с графитовым замедлителем облучается до 600 МВт-день/т, в Саванне на реакторе на тяжелой воде производится плутоний такого же качества при 1000 МВт-день/т (возможно из-за того, что часть нейтронов уходит на образование трития). Во время Манхэттенского проекта топливо из природного урана получало всего 100 МВт-день/т, таким образом, получался очень высококачественный плутоний-239 (всего 0.9-1% Pu-240, остальные изотопы еще в меньших количествах).

Антон Волков  1. На основе материалов The High Energy Weapons Archive 2. На основе книги Eric Rogers "Physics for the inquiring mind", Princeton, 1966 3. На основе Section 6.0 Nuclear Weapons FAQ, Carey Sublette, находящегося здесь. Saved from url http://nuclear-weapons.nm.ru/theory/plutonium_plant.htm

 

Сайт arch29.narod.ru создал arch icq#&nbsp139043708 единолично.

arch19.narod.ru

Получение - плутоний - Большая Энциклопедия Нефти и Газа, статья, страница 4

Получение - плутоний

Cтраница 4

Поэтому он может накапливаться в больших количествах. Подобно урану-235, плутоний-239 является хорошим ядерным горючим, пригодным для устройства ядерных реакторов, а также атомных бомб. Для получения плутония используют реакторы из природного урана с замедлителем. В этих реакторах значительная доля нейтронов поглощается в уране-238, образуя в конце концов плутоний. Накопившийся в уране плутоний может быть выделен химическими методами. Другим искусственным ядерным горючим является изотоп урана U233 с периодом полураспада 160000 лет, которого в природном уране нет. Таким образом, трудно делящиеся вещества - U238 и торий - могут быть переработаны в ценное ядерное горючее. Нептуний и плутоний являются представителями з а у р а-новых ( трансурановых) элементе в, расположенных в таблице Менделеева за ураном.  [46]

В настоящее время плутоний производится в значительно больших количествах, чем любой другой искусственно получаемый элемент. Большой военный химический завод в Ханфорде ( штат Вашингтон) для выделения плутония был спроектирован на основе исследований, выполненных в ультрамикрохимических масштабах. Рост масштабов получения плутония от ультрамикрохимических до производственных на заводе в Ханфорде соответствует увеличению примерно ь 1 миллиард раз.  [48]

Другой путь, описанный в литературе, заключается в переработке урана в плутоний с последующим делением плутония. Хотя по химическим свойствам плутоний оказался близким к урану, но все же их разделение значительно легче, чем разделение изотопов урана. Впрочем, процесс получения плутония тоже представляет большие трудности.  [49]

Другой путь, описанный в литературе, заключается в переработке урана в плутоний с последующим делением плутония. Хотя по химическим свойствам плутоний оказался близким к урану, но все же отделение плутония от урана значительно легче, чем разделение изотопов урана. Впрочем, процесс получения плутония тоже представляет большие трудности.  [50]

На рис. 318 представлена принципиальная схема ядерного реактора: / - ядерное горючее; 2 - замедлитель; 3 - стержни регулирования и аварийной защиты; 4 - отражатель нейтронов; 5 - канал для протока теплоносителя. Первые реакторы строились для получения плутония, затем в ряде стран появились исследовательские реакторы для получения пучков нейтронов. При конструировании энергетических реакторов / главной задачей является использование выделяющейся ядерной энергии и превращение ее в электрическую.  [51]

Производительность нейтронов в урановом реакторе несравнима ни с какими другими источниками и эквивалентна многим тоннам радия. В реакторах многие изотопы могут быть получены не только в виде очень активных препаратов, НО и в весомых количествах. Наглядным примером этому служит получение плутония в технологических масштабах.  [52]

Обычно получают плутоний со степенью чистоты около 99 87 вес. Металл может содержать примеси 0 059 железа, 0 04 % углерода, 0 02 % хрома, 0 029-о никеля, 0 01 % сурьмы и 0 01 % кремния. Джонсон [ 981 описал метод получения плутония высокой чистоты, который включает очистку исходного раствора последовательным двойным осаждением перекиси плутония и очистку всех реактивов. В этом методе восстановление осуществляется дважды перегнанным кальцием в тиглях из окиси кальция высокой чистоты.  [53]

Гидриды РиН2 и РиН3 образуются непосредственным соединением плутония и водорода как правило при температурах порядка 100 - 200 С. Гидриды могут также образовываться в результате коррозии металлического плутония во влажном воздухе. Реакция плутоний - водород представляет интерес как метод получения порошкового плутония, так как порошок гидрида, приготовленный в результате взаимодействия водорода с массивным металлом, разлагается в вакууме при 400 С с образованием мелкодисперсного металлического порошка.  [54]

Страницы:      1    2    3    4

www.ngpedia.ru